Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 11M20 ( Real zeros of $L(s, \chi)$; results on $L(1, \chi)$ )

  Expand all        Collapse all Results 1 - 1 of 1

1. CJM 1998 (vol 50 pp. 794)

Louboutin, St├ęphane
Upper bounds on $|L(1,\chi)|$ and applications
We give upper bounds on the modulus of the values at $s=1$ of Artin $L$-functions of abelian extensions unramified at all the infinite places. We also explain how we can compute better upper bounds and explain how useful such computed bounds are when dealing with class number problems for $\CM$-fields. For example, we will reduce the determination of all the non-abelian normal $\CM$-fields of degree $24$ with Galois group $\SL_2(F_3)$ (the special linear group over the finite field with three elements) which have class number one to the computation of the class numbers of $23$ such $\CM$-fields.

Keywords:Dedekind zeta function, Dirichlet series, $\CM$-field, relative class number
Categories:11M20, 11R42, 11Y35, 11R29

© Canadian Mathematical Society, 2017 :