location:  Publications → journals
Search results

Search: MSC category 11K06 ( General theory of distribution modulo $1$ [See also 11J71] )

 Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2011 (vol 64 pp. 1201)

Aistleitner, Christoph; Elsholtz, Christian
 The Central Limit Theorem for Subsequences in Probabilistic Number Theory Let $(n_k)_{k \geq 1}$ be an increasing sequence of positive integers, and let $f(x)$ be a real function satisfying $$\tag{1} f(x+1)=f(x), \qquad \int_0^1 f(x) ~dx=0,\qquad \operatorname{Var_{[0,1]}} f \lt \infty.$$ If $\lim_{k \to \infty} \frac{n_{k+1}}{n_k} = \infty$ the distribution of $$\tag{2} \frac{\sum_{k=1}^N f(n_k x)}{\sqrt{N}}$$ converges to a Gaussian distribution. In the case $$1 \lt \liminf_{k \to \infty} \frac{n_{k+1}}{n_k}, \qquad \limsup_{k \to \infty} \frac{n_{k+1}}{n_k} \lt \infty$$ there is a complex interplay between the analytic properties of the function $f$, the number-theoretic properties of $(n_k)_{k \geq 1}$, and the limit distribution of (2). In this paper we prove that any sequence $(n_k)_{k \geq 1}$ satisfying $\limsup_{k \to \infty} \frac{n_{k+1}}{n_k} = 1$ contains a nontrivial subsequence $(m_k)_{k \geq 1}$ such that for any function satisfying (1) the distribution of $$\frac{\sum_{k=1}^N f(m_k x)}{\sqrt{N}}$$ converges to a Gaussian distribution. This result is best possible: for any $\varepsilon\gt 0$ there exists a sequence $(n_k)_{k \geq 1}$ satisfying $\limsup_{k \to \infty} \frac{n_{k+1}}{n_k} \leq 1 + \varepsilon$ such that for every nontrivial subsequence $(m_k)_{k \geq 1}$ of $(n_k)_{k \geq 1}$ the distribution of (2) does not converge to a Gaussian distribution for some $f$. Our result can be viewed as a Ramsey type result: a sufficiently dense increasing integer sequence contains a subsequence having a certain requested number-theoretic property. Keywords:central limit theorem, lacunary sequences, linear Diophantine equations, Ramsey type theoremCategories:60F05, 42A55, 11D04, 05C55, 11K06

2. CJM 2003 (vol 55 pp. 432)

Zaharescu, Alexandru
 Pair Correlation of Squares in $p$-Adic Fields Let $p$ be an odd prime number, $K$ a $p$-adic field of degree $r$ over $\mathbf{Q}_p$, $O$ the ring of integers in $K$, $B = \{\beta_1,\dots, \beta_r\}$ an integral basis of $K$ over $\mathbf{Q}_p$, $u$ a unit in $O$ and consider sets of the form $\mathcal{N}=\{n_1\beta_1+\cdots+n_r\beta_r: 1\leq n_j\leq N_j, 1\leq j\leq r\}$. We show under certain growth conditions that the pair correlation of $\{uz^2:z\in\mathcal{N}\}$ becomes Poissonian. Categories:11S99, 11K06, 1134
 top of page | contact us | privacy | site map |