1. CJM 2010 (vol 62 pp. 787)
 Landquist, E.; Rozenhart, P.; Scheidler, R.; Webster, J.; Wu, Q.

An Explicit Treatment of Cubic Function Fields with Applications
We give an explicit treatment of cubic function fields of characteristic at least five. This includes an efficient technique for converting such a field into standard form, formulae for the field discriminant and the genus, simple necessary and sufficient criteria for nonsingularity of the defining curve, and a characterization of all triangular integral bases. Our main result is a description of the signature of any rational place in a cubic extension that involves only the defining curve and the order of the base field. All these quantities only require simple polynomial arithmetic as well as a few squarefree polynomial factorizations and, in some cases, square and cube root extraction modulo an irreducible polynomial. We also illustrate why and how signature computation plays an important role in computing the class number of the function field. This in turn has applications to the study of zeros of zeta functions of function fields.
Keywords:cubic function field, discriminant, nonsingularity, integral basis, genus, signature of a place, class number Categories:14H05, 11R58, 14H45, 11G20, 11G30, 11R16, 11R29 

2. CJM 2007 (vol 59 pp. 372)
 Maisner, Daniel; Nart, Enric

Zeta Functions of Supersingular Curves of Genus 2
We determine which isogeny classes of supersingular abelian
surfaces over a finite field $k$ of characteristic $2$ contain
jacobians. We deal with this problem in a direct way by computing
explicitly the zeta function of all supersingular curves of genus
$2$. Our procedure is constructive, so that we are able to exhibit
curves with prescribed zeta function and find formulas for the
number of curves, up to $k$isomorphism, leading to the same zeta
function.
Categories:11G20, 14G15, 11G10 

3. CJM 2003 (vol 55 pp. 331)
 Savitt, David

The Maximum Number of Points on a Curve of Genus $4$ over $\mathbb{F}_8$ is $25$
We prove that the maximum number of rational points on a smooth,
geometrically irreducible genus 4 curve over the field of 8 elements
is 25. The body of the paper shows that 27 points is not possible by
combining techniques from algebraic geometry with a computer
verification. The appendix shows that 26 points is not possible by
examining the zeta functions.
Categories:11G20, 14H25 
