location:  Publications → journals
Search results

Search: MSC category 11B30 ( Arithmetic combinatorics; higher degree uniformity )

 Expand all        Collapse all Results 1 - 1 of 1

1. CJM 2012 (vol 65 pp. 171)

Lyall, Neil; Magyar, Ákos
 Optimal Polynomial Recurrence Let $P\in\mathbb Z[n]$ with $P(0)=0$ and $\varepsilon\gt 0$. We show, using Fourier analytic techniques, that if $N\geq \exp\exp(C\varepsilon^{-1}\log\varepsilon^{-1})$ and $A\subseteq\{1,\dots,N\}$, then there must exist $n\in\mathbb N$ such that $\frac{|A\cap (A+P(n))|}{N}\gt \left(\frac{|A|}{N}\right)^2-\varepsilon.$ In addition to this we also show, using the same Fourier analytic methods, that if $A\subseteq\mathbb N$, then the set of $\varepsilon$-optimal return times $R(A,P,\varepsilon)=\left\{n\in \mathbb N \,:\,\delta(A\cap(A+P(n)))\gt \delta(A)^2-\varepsilon\right\}$ is syndetic for every $\varepsilon\gt 0$. Moreover, we show that $R(A,P,\varepsilon)$ is dense in every sufficiently long interval, in particular we show that there exists an $L=L(\varepsilon,P,A)$ such that $\left|R(A,P,\varepsilon)\cap I\right| \geq c(\varepsilon,P)|I|$ for all intervals $I$ of natural numbers with $|I|\geq L$ and $c(\varepsilon,P)=\exp\exp(-C\,\varepsilon^{-1}\log\varepsilon^{-1})$. Keywords:Sarkozy, syndetic, polynomial return timesCategory:11B30
 top of page | contact us | privacy | site map |