76. CJM 2011 (vol 64 pp. 1122)
 Seveso, Marco Adamo

$p$adic $L$functions and the Rationality of Darmon Cycles
Darmon cycles are a higher weight analogue of StarkHeegner points. They
yield local cohomology classes in the Deligne representation associated with a
cuspidal form on $\Gamma _{0}( N) $ of even weight $k_{0}\geq 2$.
They are conjectured to be the restriction of global cohomology classes in
the BlochKato Selmer group defined over narrow ring class fields attached
to a real quadratic field. We show that suitable linear combinations of them
obtained by genus characters satisfy these conjectures. We also prove $p$adic GrossZagier type formulas, relating the derivatives of $p$adic $L$functions of the weight variable attached to imaginary (resp. real)
quadratic fields to Heegner cycles (resp. Darmon cycles). Finally we express
the second derivative of the MazurKitagawa $p$adic $L$function of the
weight variable in terms of a global cycle defined over a quadratic
extension of $\mathbb{Q}$.
Categories:11F67, 14G05 

77. CJM 2011 (vol 64 pp. 282)
78. CJM 2011 (vol 64 pp. 301)
79. CJM 2011 (vol 64 pp. 345)
 McKee, James; Smyth, Chris

Salem Numbers and Pisot Numbers via Interlacing
We present a general construction of Salem numbers via rational
functions whose zeros and poles mostly lie on the unit circle and
satisfy an interlacing condition. This extends and unifies earlier
work. We then consider the ``obvious'' limit points of the set of Salem
numbers produced by our theorems and show that these are all Pisot
numbers, in support of a conjecture of Boyd. We then show that all
Pisot numbers arise in this way. Combining this with a theorem of
Boyd, we produce all Salem numbers via an interlacing construction.
Keywords:Salem numbers, Pisot numbers Category:11R06 

80. CJM 2011 (vol 64 pp. 81)
 David, C.; Wu, J.

Pseudoprime Reductions of Elliptic Curves
Let $E$ be an elliptic curve over $\mathbb Q$ without complex multiplication,
and for each prime
$p$ of good reduction, let $n_E(p) =  E(\mathbb F_p) $. For any integer
$b$, we consider elliptic pseudoprimes to the base
$b$. More precisely, let $Q_{E,b}(x)$ be the number of primes $p \leq
x$ such that $b^{n_E(p)} \equiv b\,({\rm mod}\,n_E(p))$, and let $\pi_{E,
b}^{\operatorname{pseu}}(x)$ be the number of compositive $n_E(p)$ such
that $b^{n_E(p)} \equiv b\,({\rm mod}\,n_E(p))$ (also called
elliptic curve pseudoprimes). Motivated by cryptography applications,
we address the problem of finding upper bounds for
$Q_{E,b}(x)$ and $\pi_{E, b}^{\operatorname{pseu}}(x)$,
generalising some of the literature for the classical pseudoprimes
to this new setting.
Keywords:RosserIwaniec sieve, group order of elliptic curves over finite fields, pseudoprimes Categories:11N36, 14H52 

81. CJM 2011 (vol 64 pp. 151)
 Miller, Steven J.; Wong, Siman

Moments of the Rank of Elliptic Curves
Fix an elliptic curve $E/\mathbb{Q}$ and assume the Riemann Hypothesis
for the $L$function $L(E_D, s)$ for every quadratic twist $E_D$ of
$E$ by $D\in\mathbb{Z}$. We combine Weil's
explicit formula with techniques of HeathBrown to derive an asymptotic
upper bound for the weighted moments of the analytic rank of $E_D$. We
derive from this an upper bound for the density of lowlying zeros of
$L(E_D, s)$ that is compatible with the random matrix models of Katz and
Sarnak. We also show that for any unbounded increasing function $f$ on $\mathbb{R}$,
the analytic rank and (assuming in addition the Birch and SwinnertonDyer
conjecture)
the number of integral points of $E_D$ are less than $f(D)$
for almost all $D$.
Keywords:elliptic curve, explicit formula, integral point, lowlying zeros, quadratic twist, rank Categories:11G05, 11G40 

82. CJM 2011 (vol 63 pp. 1328)
 Gun, Sanoli; Murty, M. Ram; Rath, Purusottam

On a Conjecture of Chowla and Milnor
In this paper, we investigate a conjecture due to S. and P. Chowla and
its generalization by Milnor. These are related to the delicate
question of nonvanishing of $L$functions associated to periodic
functions at integers greater than $1$. We report on some progress in
relation to these conjectures. In a different vein, we link them to a
conjecture of Zagier on multiple zeta values and also to linear
independence of polylogarithms.
Categories:11F20, 11F11 

83. CJM 2011 (vol 63 pp. 992)
 Bruin, Nils; Doerksen, Kevin

The Arithmetic of Genus Two Curves with (4,4)Split Jacobians
In this paper we study genus $2$ curves whose Jacobians admit a
polarized $(4,4)$isogeny to a product of elliptic curves. We consider
base fields of characteristic different from $2$ and $3$, which we do
not assume to be algebraically closed.
We obtain a full classification of all principally polarized abelian
surfaces that can arise from gluing two elliptic curves along their
$4$torsion, and we derive the relation their absolute invariants
satisfy.
As an intermediate step, we give a general description of Richelot
isogenies between Jacobians of genus $2$ curves, where previously only
Richelot isogenies with kernels that are pointwise defined over the
base field were considered.
Our main tool is a Galois theoretic characterization of genus $2$
curves admitting multiple Richelot isogenies.
Keywords:Genus 2 curves, isogenies, split Jacobians, elliptic curves Categories:11G30, 14H40 

84. CJM 2011 (vol 63 pp. 1284)
 Dewar, Michael

NonExistence of Ramanujan Congruences in Modular Forms of Level Four
Ramanujan famously found congruences like $p(5n+4)\equiv 0
\operatorname{mod} 5$ for the partition
function. We provide a method to find all simple
congruences of this type in the coefficients of the inverse of a
modular form on $\Gamma_{1}(4)$ that is nonvanishing on the upper
half plane. This is applied to answer open questions about the
(non)existence of congruences in the generating functions for
overpartitions, crank differences, and 2colored $F$partitions.
Keywords:modular form, Ramanujan congruence, generalized Frobenius partition, overpartition, crank Categories:11F33, 11P83 

85. CJM 2011 (vol 63 pp. 826)
 Errthum, Eric

Singular Moduli of Shimura Curves
The $j$function acts as a parametrization of the classical modular
curve. Its values at complex multiplication (CM) points are called
singular moduli and are algebraic integers. A Shimura curve is a
generalization of the modular curve and, if the Shimura curve has
genus~$0$, a rational parameterizing function exists and when
evaluated at a CM point is again algebraic over~$\mathbf{Q}$. This paper shows
that the coordinate maps given by N.~Elkies for the Shimura
curves associated to the quaternion algebras with discriminants $6$
and $10$ are Borcherds lifts of vectorvalued modular forms. This
property is then used to explicitly compute the rational norms of
singular moduli on these curves. This method not only verifies
conjectural values for the rational CM points, but also provides a way
of algebraically calculating the norms of CM points with arbitrarily
large negative discriminant.
Categories:11G18, 11F12 

86. CJM 2011 (vol 63 pp. 1083)
 Kaletha, Tasho

Decomposition of Splitting Invariants in Split Real Groups
For a maximal torus in a quasisplit semisimple simplyconnected group over a local field of characteristic $0$,
Langlands and Shelstad constructed a
cohomological invariant called the splitting invariant, which is an important
component of their endoscopic transfer factors. We study this invariant in the
case of a split real group and prove a
decomposition theorem which expresses this invariant for a general torus as a product of the corresponding
invariants for simple tori. We also show how this reduction formula allows for the comparison of splitting invariants
between different tori in the given real group.
Keywords:endoscopy, real lie group, splitting invariant, transfer factor Categories:11F70, 22E47, 11S37, 11F72, 17B22 

87. CJM 2011 (vol 63 pp. 1107)
 Liu, Baiying

Genericity of Representations of pAdic $Sp_{2n}$ and Local Langlands Parameters
Let $G$ be the $F$rational points of the symplectic group $Sp_{2n}$,
where $F$ is a nonArchimedean local field
of characteristic
$0$. Cogdell, Kim, PiatetskiShapiro, and Shahidi
constructed local Langlands functorial lifting from irreducible
generic representations of $G$ to irreducible representations of
$GL_{2n+1}(F)$.
Jiang and Soudry constructed the descent map from irreducible
supercuspidal representations of $GL_{2n+1}(F)$ to those of $G$,
showing that the local Langlands functorial lifting from the
irreducible supercuspidal generic representations is surjective. In
this paper, based on above results, using the same descent method of
studying $SO_{2n+1}$ as Jiang and Soudry, we will show the rest
of local Langlands functorial lifting is also surjective, and for any
local Langlands parameter $\phi \in \Phi(G)$, we construct a
representation $\sigma$ such that $\phi$ and $\sigma$ have the same
twisted local factors. As one application, we prove the $G$case of a
conjecture of
GrossPrasad and Rallis, that is, a local Langlands parameter $\phi
\in \Phi(G)$ is generic, i.e., the representation attached to
$\phi$ is generic, if and only if the adjoint $L$function of $\phi$
is holomorphic at $s=1$. As another application, we prove for each
Arthur parameter $\psi$, and the corresponding local Langlands
parameter
$\phi_{\psi}$, the representation attached to $\phi_{\psi}$
is generic if and only if $\phi_{\psi}$ is tempered.
Keywords:generic representations, local Langlands parameters Categories:22E50, 11S37 

88. CJM 2011 (vol 63 pp. 1220)
 Baake, Michael; Scharlau, Rudolf; Zeiner, Peter

Similar Sublattices of Planar Lattices
The similar sublattices of a planar lattice can be classified via
its multiplier ring. The latter is the ring of rational integers in
the generic case, and an order in an imaginary quadratic field
otherwise. Several classes of examples are discussed, with special
emphasis on concrete results. In particular, we derive Dirichlet
series generating functions for the number of distinct similar
sublattices of a given index, and relate them to
zeta functions of orders in imaginary quadratic fields.
Categories:11H06, 11R11, 52C05, 82D25 

89. CJM 2011 (vol 63 pp. 616)
 Lee, Edward

A Modular Quintic CalabiYau Threefold of Level 55
In this note we search the parameter space of HorrocksMumford quintic
threefolds and locate a CalabiYau threefold that is modular, in the
sense that the $L$function of its middledimensional cohomology is
associated with a classical modular form of weight 4 and level 55.
Keywords: CalabiYau threefold, nonrigid CalabiYau threefold, twodimensional Galois representation, modular variety, HorrocksMumford vector bundle Categories:14J15, 11F23, 14J32, 11G40 

90. CJM 2011 (vol 63 pp. 591)
91. CJM 2011 (vol 63 pp. 481)
 Baragar, Arthur

The Ample Cone for a K3 Surface
In this paper, we give several pictorial fractal
representations of the ample or KÃ¤hler cone for surfaces in a
certain class of $K3$ surfaces. The class includes surfaces
described by smooth $(2,2,2)$ forms in ${\mathbb P^1\times\mathbb P^1\times \mathbb P^1}$ defined over a
sufficiently large number field $K$ that have a line parallel to
one of the axes and have Picard number four. We relate the
Hausdorff dimension of this fractal to the asymptotic growth of
orbits of curves under the action of the surface's group of
automorphisms. We experimentally estimate the Hausdorff dimension
of the fractal to be $1.296 \pm .010$.
Keywords:Fractal, Hausdorff dimension, K3 surface, Kleinian groups, dynamics Categories:14J28, , , , 14J50, 11D41, 11D72, 11H56, 11G10, 37F35, 37D05 

92. CJM 2011 (vol 63 pp. 634)
 Lü, Guangshi

On Higher Moments of Fourier Coefficients of Holomorphic Cusp Forms
Let $S_{k}(\Gamma)$ be the space of holomorphic cusp forms of even
integral weight $k$ for the full modular group.
Let $\lambda_f(n)$ and $\lambda_g(n)$ be the $n$th normalized Fourier coefficients of
two holomorphic Hecke eigencuspforms $f(z), g(z) \in S_{k}(\Gamma)$, respectively.
In this paper we are able to show the following results about higher
moments of Fourier coefficients of holomorphic cusp forms.\newline
(i) For any $\varepsilon>0$, we have
\begin{equation*}
\sum_{n\leq x}\lambda_f^5(n) \ll_{f,\varepsilon}x^{\frac{15}{16}+\varepsilon}
\quad\text{and}\quad\sum_{n\leq x}\lambda_f^7(n) \ll_{f,\varepsilon}x^{\frac{63}{64}+\varepsilon}.
\end{equation*}
(ii) If $\operatorname{sym}^3\pi_f \ncong \operatorname{sym}^3\pi_g$, then for any $\varepsilon>0$, we have
\begin{equation*}
\sum_{n \leq x}\lambda_f^3(n)\lambda_g^3(n)\ll_{f,\varepsilon}x^{\frac{31}{32}+\varepsilon};
\end{equation*}
If $\operatorname{sym}^2\pi_f \ncong \operatorname{sym}^2\pi_g$, then for any $\varepsilon>0$, we have
\[
\sum_{n \leq x}\lambda_f^4(n)\lambda_g^2(n)=cx\log x+c'x+O_{f,\varepsilon}\bigl(x^{\frac{31}{32}+\varepsilon}\bigr);
\]
If $\operatorname{sym}^2\pi_f \ncong \operatorname{sym}^2\pi_g$ and $\operatorname{sym}^4\pi_f \ncong \operatorname{sym}^4\pi_g$, then for any $\varepsilon>0$, we have
\[
\sum_{n \leq x}\lambda_f^4(n)\lambda_g^4(n)=xP(\log x)+O_{f,\varepsilon}\bigl(x^{\frac{127}{128}+\varepsilon}\bigr),
\]
where $P(x)$ is a polynomial of degree $3$.
Keywords: Fourier coefficients of cusp forms, symmetric power $L$function Categories:11F30, , , , 11F11, 11F66 

93. CJM 2011 (vol 63 pp. 298)
 Gun, Sanoli; Murty, V. Kumar

A Variant of Lehmer's Conjecture, II: The CMcase
Let $f$ be a normalized Hecke eigenform with rational integer Fourier
coefficients. It is an interesting question to know how often an
integer $n$ has a factor common with the $n$th Fourier coefficient of
$f$. It has been shown in previous papers that this happens very often. In this
paper, we give an asymptotic formula for the number of integers $n$
for which $(n, a(n)) = 1$, where $a(n)$ is the $n$th Fourier coefficient of
a normalized Hecke eigenform $f$ of weight $2$ with rational integer
Fourier coefficients and having complex multiplication.
Categories:11F11, 11F30 

94. CJM 2010 (vol 63 pp. 241)
 Essouabri, Driss; Matsumoto, Kohji; Tsumura, Hirofumi

Multiple ZetaFunctions Associated with Linear Recurrence Sequences and the Vectorial Sum Formula
We prove the holomorphic continuation of certain multivariable multiple
zetafunctions whose coefficients satisfy a suitable recurrence condition.
In fact, we introduce more general vectorial zetafunctions and prove their
holomorphic continuation. Moreover, we show a vectorial sum formula among
those vectorial zetafunctions from which some generalizations of the
classical sum formula can be deduced.
Keywords:Zetafunctions, holomorphic continuation, recurrence sequences, Fibonacci numbers, sum formulas Categories:11M41, 40B05, 11B39 

95. CJM 2010 (vol 63 pp. 277)
 Ghate, Eknath; Vatsal, Vinayak

Locally Indecomposable Galois Representations
In a previous paper
the authors showed that, under some technical
conditions,
the local Galois representations attached to the members of
a nonCM family of ordinary cusp forms are indecomposable for all
except possibly finitely many
members of the family. In this paper we use deformation theoretic
methods to give examples of nonCM families for
which every classical member of weight at least two has a locally
indecomposable Galois representation.
Category:11F80 

96. CJM 2010 (vol 63 pp. 136)
97. CJM 2010 (vol 63 pp. 38)
 Brüdern, Jörg; Wooley, Trevor D.

Asymptotic Formulae for Pairs of Diagonal Cubic Equations
We investigate the number of integral solutions possessed by a
pair of diagonal cubic equations in a large box. Provided that the number of
variables in the system is at least fourteen, and in addition the number of
variables in any nontrivial linear combination of the underlying forms is at
least eight, we obtain an asymptotic formula for the number of integral
solutions consistent with the product of local densities associated with the
system.
Keywords:exponential sums, Diophantine equations Categories:11D72, 11P55 

98. CJM 2010 (vol 62 pp. 1276)
 El Wassouli, Fouzia

A Generalized Poisson Transform of an $L^{p}$Function over the Shilov Boundary of the $n$Dimensional Lie Ball
Let $\mathcal{D}$ be the $n$dimensional Lie ball and let
$\mathbf{B}(S)$ be the space of hyperfunctions on the Shilov
boundary $S$ of $\mathcal{D}$.
The aim of this paper is to give a
necessary and sufficient condition on the generalized Poisson
transform $P_{l,\lambda}f$ of an element $f$ in the space
$\mathbf{B}(S)$ for $f$ to be in $ L^{p}(S)$, $1 > p > \infty.$
Namely, if $F$ is the Poisson transform of some $f\in
\mathbf{B}(S)$ (i.e., $F=P_{l,\lambda}f$), then for any
$l\in \mathbb{Z}$ and $\lambda\in \mathbb{C}$ such that
$\mathcal{R}e[i\lambda] > \frac{n}{2}1$, we show that $f\in L^{p}(S)$ if and
only if $f$ satisfies the growth condition
$$
\F\_{\lambda,p}=\sup_{0\leq r
< 1}(1r^{2})^{\mathcal{R}e[i\lambda]\frac{n}{2}+l}\Big[\int_{S}F(ru)^{p}du
\Big]^{\frac{1}{p}} < +\infty.
$$
Keywords:Lie ball, Shilov boundary, Fatou's theorem, hyperfuctions, parabolic subgroup, homogeneous line bundle Categories:32A45, 30E20, 33C67, 33C60, 33C55, 32A25, 33C75, 11K70 

99. CJM 2010 (vol 62 pp. 1011)
 Buckingham, Paul; Snaith, Victor

Functoriality of the Canonical Fractional Galois Ideal
The fractional Galois ideal
is a conjectural improvement on the higher Stickelberger
ideals defined at negative integers, and is expected to provide
nontrivial annihilators for higher $K$groups of rings of integers of
number fields. In this article, we extend the definition of the
fractional Galois ideal to arbitrary (possibly infinite and
nonabelian) Galois extensions of number fields under the assumption
of Stark's conjectures and prove naturality properties under
canonical changes of extension. We discuss applications of this to the
construction of ideals in noncommutative Iwasawa algebras.
Categories:11R42, 11R23, 11R70 

100. CJM 2010 (vol 62 pp. 1155)
 Young, Matthew P.

Moments of the Critical Values of Families of Elliptic Curves, with Applications
We make conjectures on the moments of the central values of the family
of all elliptic curves and on the moments of the first derivative of
the central values of a large family of positive rank curves. In both
cases the order of magnitude is the same as that of the moments of the
central values of an orthogonal family of $L$functions. Notably, we
predict that the critical values of all rank $1$ elliptic curves is
logarithmically larger than the rank $1$ curves in the positive rank
family.
Furthermore, as arithmetical applications, we make a conjecture on the
distribution of $a_p$'s amongst all rank $2$ elliptic curves and
show how the Riemann hypothesis can be deduced from sufficient
knowledge of the first moment of the positive rank family (based on an
idea of Iwaniec)
Categories:11M41, 11G40, 11M26 
