CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 05 ( Combinatorics )

  Expand all        Collapse all Results 26 - 50 of 73

26. CJM 2011 (vol 64 pp. 1359)

Nozaki, Hiroshi; Sawa, Masanori
Note on Cubature Formulae and Designs Obtained from Group Orbits
In 1960, Sobolev proved that for a finite reflection group $G$, a $G$-invariant cubature formula is of degree $t$ if and only if it is exact for all $G$-invariant polynomials of degree at most $t$. In this paper, we find some observations on invariant cubature formulas and Euclidean designs in connection with the Sobolev theorem. First, we give an alternative proof of theorems by Xu (1998) on necessary and sufficient conditions for the existence of cubature formulas with some strong symmetry. The new proof is shorter and simpler compared to the original one by Xu, and moreover gives a general interpretation of the analytically-written conditions of Xu's theorems. Second, we extend a theorem by Neumaier and Seidel (1988) on Euclidean designs to invariant Euclidean designs, and thereby classify tight Euclidean designs obtained from unions of the orbits of the corner vectors. This result generalizes a theorem of Bajnok (2007) which classifies tight Euclidean designs invariant under the Weyl group of type $B$ to other finite reflection groups.

Keywords:cubature formula, Euclidean design, radially symmetric integral, reflection group, Sobolev theorem
Categories:65D32, 05E99, 51M99

27. CJM 2011 (vol 64 pp. 822)

Haglund, J.; Morse, J.; Zabrocki, M.
A Compositional Shuffle Conjecture Specifying Touch Points of the Dyck Path
We introduce a $q,t$-enumeration of Dyck paths that are forced to touch the main diagonal at specific points and forbidden to touch elsewhere and conjecture that it describes the action of the Macdonald theory $\nabla$ operator applied to a Hall--Littlewood polynomial. Our conjecture refines several earlier conjectures concerning the space of diagonal harmonics including the ``shuffle conjecture" (Duke J. Math. $\mathbf {126}$ ($2005$), 195-232) for $\nabla e_n[X]$. We bring to light that certain generalized Hall--Littlewood polynomials indexed by compositions are the building blocks for the algebraic combinatorial theory of $q,t$-Catalan sequences, and we prove a number of identities involving these functions.

Keywords:Dyck Paths, Parking functions, Hall--Littlewood symmetric functions
Categories:05E05, 33D52

28. CJM 2011 (vol 63 pp. 1254)

D'Azevedo, Antonio Breda; Jones, Gareth A.; Schulte, Egon
Constructions of Chiral Polytopes of Small Rank
An abstract polytope of rank $n$ is said to be chiral if its automorphism group has precisely two orbits on the flags, such that adjacent flags belong to distinct orbits. This paper describes a general method for deriving new finite chiral polytopes from old finite chiral polytopes of the same rank. In particular, the technique is used to construct many new examples in ranks $3$, $4$, and $5$.

Keywords:abstract regular polytope, chiral polytope, chiral maps
Categories:51M20, 52B15, 05C25

29. CJM 2010 (vol 62 pp. 1228)

Ardila, Federico; Fink, Alex; Rincón, Felipe
Valuations for Matroid Polytope Subdivisions
We prove that the ranks of the subsets and the activities of the bases of a matroid define valuations for the subdivisions of a matroid polytope into smaller matroid polytopes.

Categories:05B35, 52B40, 52B45, 52C22

30. CJM 2010 (vol 62 pp. 1058)

Chen, Yichao; Liu, Yanpei
On a Conjecture of S. Stahl
S. Stahl conjectured that the zeros of genus polynomials are real. In this note, we disprove this conjecture.

Keywords:genus polynomial, zeros, real
Category:05C10

31. CJM 2009 (vol 62 pp. 355)

Král', Daniel; Máčajová, Edita; Pór, Attila; Sereni, Jean-Sébastien
Characterisation Results for Steiner Triple Systems and Their Application to Edge-Colourings of Cubic Graphs
It is known that a Steiner triple system is projective if and only if it does not contain the four-triple configuration $C_{14}$. We find three configurations such that a Steiner triple system is affine if and only if it does not contain one of these configurations. Similarly, we characterise Hall triple systems using two forbidden configurations. Our characterisations have several interesting corollaries in the area of edge-colourings of graphs. A cubic graph G is S-edge-colourable for a Steiner triple system S if its edges can be coloured with points of S in such a way that the points assigned to three edges sharing a vertex form a triple in S. Among others, we show that all cubic graphs are S-edge-colourable for every non-projective non-affine point-transitive Steiner triple system S.

Categories:05B07, 05C15

32. CJM 2009 (vol 61 pp. 1300)

Hubard, Isabel; Orbani\'c, Alen; Weiss, Asia Ivi\'c
Monodromy Groups and Self-Invariance
For every polytope $\mathcal{P}$ there is the universal regular polytope of the same rank as $\mathcal{P}$ corresponding to the Coxeter group $\mathcal{C} =[\infty, \dots, \infty]$. For a given automorphism $d$ of $\mathcal{C}$, using monodromy groups, we construct a combinatorial structure $\mathcal{P}^d$. When $\mathcal{P}^d$ is a polytope isomorphic to $\mathcal{P}$ we say that $\mathcal{P}$ is self-invariant with respect to $d$, or $d$-invariant. We develop algebraic tools for investigating these operations on polytopes, and in particular give a criterion on the existence of a $d$\nobreakdash-auto\-morphism of a given order. As an application, we analyze properties of self-dual edge-transitive polyhedra and polyhedra with two flag-orbits. We investigate properties of medials of such polyhedra. Furthermore, we give an example of a self-dual equivelar polyhedron which contains no polarity (duality of order 2). We also extend the concept of Petrie dual to higher dimensions, and we show how it can be dealt with using self-invariance.

Keywords:maps, abstract polytopes, self-duality, monodromy groups, medials of polyhedra
Categories:51M20, 05C25, 05C10, 05C30, 52B70

33. CJM 2009 (vol 61 pp. 1092)

Irving, John
Minimal Transitive Factorizations of Permutations into Cycles
We introduce a new approach to an enumerative problem closely linked with the geometry of branched coverings, that is, we study the number $H_{\alpha}(i_2,i_3,\dots)$ of ways a given permutation (with cycles described by the partition $\a$) can be decomposed into a product of exactly $i_2$ 2-cycles, $i_3$ 3-cycles, \emph{etc.}, with certain minimality and transitivity conditions imposed on the factors. The method is to encode such factorizations as planar maps with certain \emph{descent structure} and apply a new combinatorial decomposition to make their enumeration more manageable. We apply our technique to determine $H_{\alpha}(i_2,i_3,\dots)$ when $\a$ has one or two parts, extending earlier work of Goulden and Jackson. We also show how these methods are readily modified to count \emph{inequivalent} factorizations, where equivalence is defined by permitting commutations of adjacent disjoint factors. Our technique permits us to generalize recent work of Goulden, Jackson, and Latour, while allowing for a considerable simplification of their analysis.

Categories:05A15, 05E10

34. CJM 2009 (vol 61 pp. 888)

Novik, Isabella; Swartz, Ed
Face Ring Multiplicity via CM-Connectivity Sequences
The multiplicity conjecture of Herzog, Huneke, and Srinivasan is verified for the face rings of the following classes of simplicial complexes: matroid complexes, complexes of dimension one and two, and Gorenstein complexes of dimension at most four. The lower bound part of this conjecture is also established for the face rings of all doubly Cohen--Macaulay complexes whose 1-skeleton's connectivity does not exceed the codimension plus one as well as for all $(d-1)$-dimensional $d$-Cohen--Macaulay complexes. The main ingredient of the proofs is a new interpretation of the minimal shifts in the resolution of the face ring $\field[\Delta]$ via the Cohen--Macaulay connectivity of the skeletons of $\Delta$.

Categories:13F55, 52B05;, 13H15;, 13D02;, 05B35

35. CJM 2009 (vol 61 pp. 904)

Saliola, Franco V.
The Face Semigroup Algebra of a Hyperplane Arrangement
This article presents a study of an algebra spanned by the faces of a hyperplane arrangement. The quiver with relations of the algebra is computed and the algebra is shown to be a Koszul algebra. It is shown that the algebra depends only on the intersection lattice of the hyperplane arrangement. A complete system of primitive orthogonal idempotents for the algebra is constructed and other algebraic structure is determined including: a description of the projective indecomposable modules, the Cartan invariants, projective resolutions of the simple modules, the Hochschild homology and cohomology, and the Koszul dual algebra. A new cohomology construction on posets is introduced, and it is shown that the face semigroup algebra is isomorphic to the cohomology algebra when this construction is applied to the intersection lattice of the hyperplane arrangement.

Categories:52C35, 05E25, 16S37

36. CJM 2009 (vol 61 pp. 583)

Hajir, Farshid
Algebraic Properties of a Family of Generalized Laguerre Polynomials
We study the algebraic properties of Generalized Laguerre Polynomials for negative integral values of the parameter. For integers $r,n\geq 0$, we conjecture that $L_n^{(-1-n-r)}(x) = \sum_{j=0}^n \binom{n-j+r}{n-j}x^j/j!$ is a $\Q$-irreducible polynomial whose Galois group contains the alternating group on $n$ letters. That this is so for $r=n$ was conjectured in the 1950's by Grosswald and proven recently by Filaseta and Trifonov. It follows from recent work of Hajir and Wong that the conjecture is true when $r$ is large with respect to $n\geq 5$. Here we verify it in three situations: i) when $n$ is large with respect to $r$, ii) when $r \leq 8$, and iii) when $n\leq 4$. The main tool is the theory of $p$-adic Newton Polygons.

Categories:11R09, 05E35

37. CJM 2009 (vol 61 pp. 465)

Woodford, Roger
On Partitions into Powers of Primes and Their Difference Functions
In this paper, we extend the approach first outlined by Hardy and Ramanujan for calculating the asymptotic formulae for the number of partitions into $r$-th powers of primes, $p_{\mathbb{P}^{(r)}}(n)$, to include their difference functions. In doing so, we rectify an oversight of said authors, namely that the first difference function is perforce positive for all values of $n$, and include the magnitude of the error term.

Categories:05A17, 11P81

38. CJM 2008 (vol 60 pp. 1108)

Lopez-Abad, J.; Manoussakis, A.
A Classification of Tsirelson Type Spaces
We give a complete classification of mixed Tsirelson spaces $T[(\mathcal F_i,\theta_i)_{i=1}^{r}]$ for finitely many pairs of given compact and hereditary families $\mathcal F_i$ of finite sets of integers and $0<\theta_i<1$ in terms of the Cantor--Bendixson indices of the families $\mathcal F_i$, and $\theta_i$ ($1\le i\le r$). We prove that there are unique countable ordinal $\alpha$ and $0<\theta<1$ such that every block sequence of $T[(\mathcal F_i,\theta_i)_{i=1}^{r}]$ has a subsequence equivalent to a subsequence of the natural basis of the $T(\mathcal S_{\omega^\alpha},\theta)$. Finally, we give a complete criterion of comparison in between two of these mixed Tsirelson spaces.

Categories:46B20, 05D10

39. CJM 2008 (vol 60 pp. 960)

Stahl, Saul
Erratum: On the Zeros of Some Genus Polynomials
No abstract.

Categories:05C10, 05A15, 30C15, 26C10

40. CJM 2008 (vol 60 pp. 958)

Chen, Yichao
A Note on a Conjecture of S. Stahl
S. Stahl (Canad. J. Math. \textbf{49}(1997), no. 3, 617--640) conjectured that the zeros of genus polynomial are real. L. Liu and Y. Wang disproved this conjecture on the basis of Example 6.7. In this note, it is pointed out that there is an error in this example and a new generating matrix and initial vector are provided.

Keywords:genus polynomial, zeros, real
Categories:05C10, 05A15, 30C15, 26C10

41. CJM 2008 (vol 60 pp. 297)

Bini, G.; Goulden, I. P.; Jackson, D. M.
Transitive Factorizations in the Hyperoctahedral Group
The classical Hurwitz enumeration problem has a presentation in terms of transitive factorizations in the symmetric group. This presentation suggests a generalization from type~$A$ to other finite reflection groups and, in particular, to type~$B$. We study this generalization both from a combinatorial and a geometric point of view, with the prospect of providing a means of understanding more of the structure of the moduli spaces of maps with an $\gS_2$-symmetry. The type~$A$ case has been well studied and connects Hurwitz numbers to the moduli space of curves. We conjecture an analogous setting for the type~$B$ case that is studied here.

Categories:05A15, 14H10, 58D29

42. CJM 2008 (vol 60 pp. 266)

Bergeron, Nantel; Reutenauer, Christophe; Rosas, Mercedes; Zabrocki, Mike
Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables
We introduce a natural Hopf algebra structure on the space of noncommutative symmetric functions. The bases for this algebra are indexed by set partitions. We show that there exists a natural inclusion of the Hopf algebra of noncommutative symmetric functions in this larger space. We also consider this algebra as a subspace of noncommutative polynomials and use it to understand the structure of the spaces of harmonics and coinvariants with respect to this collection of noncommutative polynomials and conclude two analogues of Chevalley's theorem in the noncommutative setting.

Categories:16W30, 05A18;, 05E10

43. CJM 2008 (vol 60 pp. 64)

Daigle, Daniel
Classification of Linear Weighted Graphs Up to Blowing-Up and Blowing-Down
We classify linear weighted graphs up to the blowing-up and blowing-down operations which are relevant for the study of algebraic surfaces.

Keywords:weighted graph, dual graph, blowing-up, algebraic surface
Categories:14J26, 14E07, 14R05, 05C99

44. CJM 2007 (vol 59 pp. 828)

Ortner, Ronald; Woess, Wolfgang
Non-Backtracking Random Walks and Cogrowth of Graphs
Let $X$ be a locally finite, connected graph without vertices of degree $1$. Non-backtracking random walk moves at each step with equal probability to one of the ``forward'' neighbours of the actual state, \emph{i.e.,} it does not go back along the preceding edge to the preceding state. This is not a Markov chain, but can be turned into a Markov chain whose state space is the set of oriented edges of $X$. Thus we obtain for infinite $X$ that the $n$-step non-backtracking transition probabilities tend to zero, and we can also compute their limit when $X$ is finite. This provides a short proof of old results concerning cogrowth of groups, and makes the extension of that result to arbitrary regular graphs rigorous. Even when $X$ is non-regular, but \emph{small cycles are dense in} $X$, we show that the graph $X$ is non-amenable if and only if the non-backtracking $n$-step transition probabilities decay exponentially fast. This is a partial generalization of the cogrowth criterion for regular graphs which comprises the original cogrowth criterion for finitely generated groups of Grigorchuk and Cohen.

Keywords:graph, oriented line grap, covering tree, random walk, cogrowth, amenability
Categories:05C75, 60G50, 20F69

45. CJM 2007 (vol 59 pp. 225)

Baker, Matt; Rumely, Robert
Harmonic Analysis on Metrized Graphs
This paper studies the Laplacian operator on a metrized graph, and its spectral theory.

Keywords:metrized graph, harmonic analysis, eigenfunction
Categories:43A99, 58C40, 05C99

46. CJM 2007 (vol 59 pp. 36)

Develin, Mike; Martin, Jeremy L.; Reiner, Victor
Classification of Ding's Schubert Varieties: Finer Rook Equivalence
K.~Ding studied a class of Schubert varieties $X_\lambda$ in type A partial flag manifolds, indexed by integer partitions $\lambda$ and in bijection with dominant permutations. He observed that the Schubert cell structure of $X_\lambda$ is indexed by maximal rook placements on the Ferrers board $B_\lambda$, and that the integral cohomology groups $H^*(X_\lambda;\:\Zz)$, $H^*(X_\mu;\:\Zz)$ are additively isomorphic exactly when the Ferrers boards $B_\lambda, B_\mu$ satisfy the combinatorial condition of \emph{rook-equivalence}. We classify the varieties $X_\lambda$ up to isomorphism, distinguishing them by their graded cohomology rings with integer coefficients. The crux of our approach is studying the nilpotence orders of linear forms in the cohomology ring.

Keywords:Schubert variety, rook placement, Ferrers board, flag manifold, cohomology ring, nilpotence
Categories:14M15, 05E05

47. CJM 2006 (vol 58 pp. 1026)

Handelman, David
Karamata Renewed and Local Limit Results
Connections between behaviour of real analytic functions (with no negative Maclaurin series coefficients and radius of convergence one) on the open unit interval, and to a lesser extent on arcs of the unit circle, are explored, beginning with Karamata's approach. We develop conditions under which the asymptotics of the coefficients are related to the values of the function near $1$; specifically, $a(n)\sim f(1-1/n)/ \alpha n$ (for some positive constant $\alpha$), where $f(t)=\sum a(n)t^n$. In particular, if $F=\sum c(n) t^n$ where $c(n) \geq 0$ and $\sum c(n)=1$, then $f$ defined as $(1-F)^{-1}$ (the renewal or Green's function for $F$) satisfies this condition if $F'$ does (and a minor additional condition is satisfied). In come cases, we can show that the absolute sum of the differences of consecutive Maclaurin coefficients converges. We also investigate situations in which less precise asymptotics are available.

Categories:30B10, 30E15, 41A60, 60J35, 05A16

48. CJM 2005 (vol 57 pp. 82)

Fallat, Shaun M.; Gekhtman, Michael I.
Jordan Structures of Totally Nonnegative Matrices
An $n \times n$ matrix is said to be totally nonnegative if every minor of $A$ is nonnegative. In this paper we completely characterize all possible Jordan canonical forms of irreducible totally nonnegative matrices. Our approach is mostly combinatorial and is based on the study of weighted planar diagrams associated with totally nonnegative matrices.

Keywords:totally nonnegative matrices, planar diagrams,, principal rank, Jordan canonical form
Categories:15A21, 15A48, 05C38

49. CJM 2004 (vol 56 pp. 871)

Schocker, Manfred
Lie Elements and Knuth Relations
A coplactic class in the symmetric group $\Sym_n$ consists of all permutations in $\Sym_n$ with a given Schensted $Q$-symbol, and may be described in terms of local relations introduced by Knuth. Any Lie element in the group algebra of $\Sym_n$ which is constant on coplactic classes is already constant on descent classes. As a consequence, the intersection of the Lie convolution algebra introduced by Patras and Reutenauer and the coplactic algebra introduced by Poirier and Reutenauer is the direct sum of all Solomon descent algebras.

Keywords:symmetric group, descent set, coplactic relation, Hopf algebra,, convolution product
Categories:17B01, 05E10, 20C30, 16W30

50. CJM 2002 (vol 54 pp. 1086)

Polterovich, Iosif
Combinatorics of the Heat Trace on Spheres
We present a concise explicit expression for the heat trace coefficients of spheres. Our formulas yield certain combinatorial identities which are proved following ideas of D.~Zeilberger. In particular, these identities allow to recover in a surprising way some known formulas for the heat trace asymptotics. Our approach is based on a method for computation of heat invariants developed in [P].

Categories:05A19, 58J35
Page
   1 2 3    

© Canadian Mathematical Society, 2018 : https://cms.math.ca/