1. CJM Online first
 Dow, Alan; Tall, Franklin D.

Normality versus paracompactness in locally compact spaces
This note provides a correct proof of the result claimed by the
second author that locally compact normal spaces are collectionwise
Hausdorff in certain models obtained by forcing with a coherent
Souslin tree. A novel feature of the proof is the use of saturation
of the nonstationary ideal on $\omega_1$, as well as of a strong
form of Chang's Conjecture. Together with other improvements,
this enables the consistent characterization of locally compact
hereditarily paracompact spaces as those locally compact, hereditarily
normal spaces that do not include a copy of $\omega_1$.
Keywords:normal, paracompact, locally compact, countably tight, collectionwise Hausdorff, forcing with a coherent Souslin tree, Martin's Maximum, PFA(S)[S], Axiom R, moving off property Categories:54A35, 54D20, 54D45, 03E35, 03E50, 03E55, 03E57 

2. CJM 2017 (vol 69 pp. 1338)
3. CJM Online first
 Speissegger, Patrick

Quasianalytic Ilyashenko algebras
I construct a quasianalytic field $\mathcal{F}$ of germs at $+\infty$
of real functions with logarithmic generalized power series as
asymptotic expansions, such that $\mathcal{F}$ is closed under differentiation
and $\log$composition; in particular, $\mathcal{F}$ is a Hardy field.
Moreover, the field $\mathcal{F} \circ (\log)$ of germs at $0^+$ contains
all transition maps of hyperbolic saddles of planar real analytic
vector fields.
Keywords:generalized series expansion, quasianalyticity, transition map Categories:41A60, 30E15, 37D99, 03C99 

4. CJM 2016 (vol 69 pp. 502)
 Fischer, Vera; Mejia, Diego Alejandro

Splitting, Bounding, and Almost Disjointness Can Be Quite Different
We prove the consistency of
$$
\operatorname{add}(\mathcal{N})\lt
\operatorname{cov}(\mathcal{N})
\lt \mathfrak{p}=\mathfrak{s}
=\mathfrak{g}\lt \operatorname{add}(\mathcal{M})
= \operatorname{cof}(\mathcal{M}) \lt \mathfrak{a}
=\mathfrak{r}=\operatorname{non}(\mathcal{N})=\mathfrak{c}
$$
with $\mathrm{ZFC}$, where each of these cardinal
invariants assume arbitrary
uncountable regular values.
Keywords:cardinal characteristics of the continuum, splitting, bounding number, maximal almostdisjoint families, template forcing iterations, isomorphismofnames Categories:03E17, 03E35, 03E40 

5. CJM 2015 (vol 68 pp. 44)
 Fernández Bretón, David J.

Strongly Summable Ultrafilters, Union Ultrafilters, and the Trivial Sums Property
We answer two questions of Hindman, SteprÄns and Strauss,
namely we prove that every
strongly summable
ultrafilter on an abelian group is sparse and has the trivial
sums property. Moreover we
show that in most
cases the sparseness of the given ultrafilter is a
consequence of its being isomorphic to a union ultrafilter. However,
this does not happen
in all cases:
we also construct (assuming Martin's Axiom for countable partial
orders, i.e.
$\operatorname{cov}(\mathcal{M})=\mathfrak c$), on the
Boolean group, a strongly summable ultrafilter that
is not additively isomorphic to any union ultrafilter.
Keywords:ultrafilter, StoneCech compactification, sparse ultrafilter, strongly summable ultrafilter, union ultrafilter, finite sum, additive isomorphism, trivial sums property, Boolean group, abelian group Categories:03E75, 54D35, 54D80, 05D10, 05A18, 20K99 

6. CJM 2015 (vol 68 pp. 675)
 MartínezdelaVega, Veronica; Mouron, Christopher

Monotone Classes of Dendrites
Continua $X$ and $Y$ are monotone equivalent
if there exist monotone onto maps $f:X\longrightarrow Y$ and
$g:Y\longrightarrow X$. A continuum $X$ is isolated with respect
to monotone maps if every continuum that is monotone equivalent
to $X$ must also be homeomorphic to
$X$. In this paper we show that a dendrite $X$ is isolated with
respect to
monotone maps if and only if the set of ramification points of
$X$ is
finite. In this way we fully characterize the classes of dendrites
that are
monotone isolated.
Keywords:dendrite, monotone, bqo, antichain Categories:54F50, 54C10, 06A07, 54F15, 54F65, 03E15 

7. CJM 2013 (vol 66 pp. 759)
8. CJM 2013 (vol 66 pp. 903)
 Sargsyan, Grigor; Trang, Nam

Nontame Mice from Tame Failures of the Unique Branch Hypothesis
In this paper, we show that the failure of the unique branch
hypothesis (UBH) for tame trees
implies that in some homogenous generic extension of $V$ there is a
transitive model $M$ containing $Ord \cup \mathbb{R}$ such that
$M\vDash \mathsf{AD}^+ + \Theta \gt \theta_0$. In particular, this
implies the existence (in $V$) of a nontame mouse. The results of
this paper significantly extend J. R. Steel's earlier results
for tame trees.
Keywords:mouse, inner model theory, descriptive set theory, hod mouse, core model induction, UBH Categories:03E15, 03E45, 03E60 

9. CJM 2013 (vol 66 pp. 743)
 Hrušák, Michael; van Mill, Jan

Nearly Countable Dense Homogeneous Spaces
We study separable metric spaces with few types of countable dense
sets. We present a structure theorem for locally compact spaces
having precisely $n$ types of countable dense sets: such a space
contains a subset $S$ of size at most $n{}1$ such that $S$ is
invariant under
all homeomorphisms of $X$ and $X\setminus S$ is countable dense
homogeneous. We prove that every Borel space having fewer than $\mathfrak{c}$
types of
countable dense sets is Polish. The natural question of whether every
Polish space has either countably many or $\mathfrak{c}$ many types of
countable
dense sets, is shown to be closely related to Topological Vaught's
Conjecture.
Keywords:countable dense homogeneous, nearly countable dense homogeneous, Effros Theorem, Vaught's conjecture Categories:54H05, 03E15, 54E50 

10. CJM 2013 (vol 66 pp. 303)
 Elekes, Márton; Steprāns, Juris

Haar Null Sets and the Consistent Reflection of Nonmeagreness
A subset $X$ of a Polish group $G$ is called Haar null if there exists
a Borel set $B \supset X$ and Borel probability measure $\mu$ on $G$ such that
$\mu(gBh)=0$ for every $g,h \in G$.
We prove that there exist a set $X \subset \mathbb R$ that is not Lebesgue null and a
Borel probability measure $\mu$ such that $\mu(X + t) = 0$ for every $t \in
\mathbb R$.
This answers a question from David Fremlin's problem list by showing
that one cannot simplify the definition of a Haar null set by leaving out the
Borel set $B$. (The answer was already known assuming the Continuum
Hypothesis.)
This result motivates the following Baire category analogue. It is consistent
with $ZFC$ that there exist an abelian Polish group $G$ and a Cantor
set $C \subset G$ such that for every nonmeagre set $X \subset G$ there exists a $t
\in G$ such that $C \cap (X + t)$ is relatively nonmeagre in $C$. This
essentially generalises results of BartoszyÅski and BurkeMiller.
Keywords:Haar null, Christensen, nonlocally compact Polish group, packing dimension, Problem FC on Fremlin's list, forcing, generic real Categories:28C10, 03E35, 03E17, , , , , 22C05, 28A78 

11. CJM 2012 (vol 64 pp. 1378)
 Raghavan, Dilip; Steprāns, Juris

On Weakly Tight Families
Using ideas from Shelah's recent proof that a completely
separable maximal almost disjoint family exists when
$\mathfrak{c} \lt {\aleph}_{\omega}$, we construct a weakly tight family
under the hypothesis $\mathfrak{s} \leq \mathfrak{b} \lt
{\aleph}_{\omega}$.
The case when $\mathfrak{s} \lt \mathfrak{b}$
is handled in $\mathrm{ZFC}$ and does not require $\mathfrak{b} \lt {\aleph}_{\omega}$,
while an additional PCF type hypothesis, which holds when $\mathfrak{b} \lt
{\aleph}_{\omega}$ is used to treat the case $\mathfrak{s} = \mathfrak{b}$. The notion of
a weakly tight family is a natural weakening of the well studied
notion of a Cohen indestructible maximal almost disjoint family. It
was introduced by HruÅ¡Ã¡k and GarcÃa
Ferreira, who applied it to the KatÃ©tov order on almost
disjoint families.
Keywords:maximal almost disjoint family, cardinal invariants Categories:03E17, 03E15, 03E35, 03E40, 03E05, 03E50, 03E65 

12. CJM 2012 (vol 65 pp. 222)
 Sauer, N. W.

Distance Sets of Urysohn Metric Spaces
A metric space $\mathrm{M}=(M;\operatorname{d})$ is {\em homogeneous} if for every
isometry $f$ of a finite subspace of $\mathrm{M}$ to a subspace of
$\mathrm{M}$ there exists an isometry of $\mathrm{M}$ onto
$\mathrm{M}$ extending $f$. The space $\mathrm{M}$ is {\em universal}
if it isometrically embeds every finite metric space $\mathrm{F}$ with
$\operatorname{dist}(\mathrm{F})\subseteq \operatorname{dist}(\mathrm{M})$. (With
$\operatorname{dist}(\mathrm{M})$ being the set of distances between points in
$\mathrm{M}$.)
A metric space $\boldsymbol{U}$ is an {\em Urysohn} metric space if
it is homogeneous, universal, separable and complete. (It is not
difficult to deduce
that an Urysohn metric space $\boldsymbol{U}$ isometrically embeds
every separable metric space $\mathrm{M}$ with
$\operatorname{dist}(\mathrm{M})\subseteq \operatorname{dist}(\boldsymbol{U})$.)
The main results are: (1) A characterization of the sets
$\operatorname{dist}(\boldsymbol{U})$ for Urysohn metric spaces $\boldsymbol{U}$.
(2) If $R$ is the distance set of an Urysohn metric space and
$\mathrm{M}$ and $\mathrm{N}$ are two metric spaces, of any
cardinality with distances in $R$, then they amalgamate disjointly to
a metric space with distances in $R$. (3) The completion of every
homogeneous, universal, separable metric space $\mathrm{M}$ is
homogeneous.
Keywords:partitions of metric spaces, Ramsey theory, metric geometry, Urysohn metric space, oscillation stability Categories:03E02, 22F05, 05C55, 05D10, 22A05, 51F99 

13. CJM 2012 (vol 64 pp. 1182)
 Tall, Franklin D.

PFA$(S)[S]$: More Mutually Consistent Topological Consequences of $PFA$ and $V=L$
Extending the work of Larson and Todorcevic,
we show there
is a model of set theory in which normal spaces are collectionwise
Hausdorff if they are either first countable or locally compact, and
yet there are no first countable $L$spaces or compact
$S$spaces. The model is one of the form PFA$(S)[S]$, where $S$
is a coherent Souslin tree.
Keywords:PFA$(S)[S]$, proper forcing, coherent Souslin tree, locally compact, normal, collectionwise Hausdorff, supercompact cardinal Categories:54A35, 54D15, 54D20, 54D45, 03E35, 03E57, 03E65 

14. CJM 2012 (vol 65 pp. 485)
 Bice, Tristan Matthew

Filters in C*Algebras
In this paper we analyze states on C*algebras and
their relationship to filterlike structures of projections and
positive elements in the unit ball. After developing the basic theory
we use this to investigate the KadisonSinger conjecture, proving its
equivalence to an apparently quite weak paving conjecture and the
existence of unique maximal centred extensions of projections coming
from ultrafilters on the natural numbers. We then prove that Reid's
positive answer to this for qpoints in fact also holds for rapid
ppoints, and that maximal centred filters are obtained in this case.
We then show that consistently such maximal centred filters do not
exist at all meaning that, for every pure state on the Calkin algebra,
there exists a pair of projections on which the state is 1, even
though the state is bounded strictly below 1 for projections below
this pair. Lastly we investigate towers, using cardinal invariant
equalities to construct towers on the natural numbers that do and do
not remain towers when canonically embedded into the Calkin algebra.
Finally we show that consistently all towers on the natural numbers
remain towers under this embedding.
Keywords:C*algebras, states, KadinsonSinger conjecture, ultrafilters, towers Categories:46L03, 03E35 

15. CJM 2011 (vol 63 pp. 1416)
 Shelah, Saharon

MAD Saturated Families and SANE Player
We throw some light on the question: is there a MAD family
(a maximal family of infinite subsets of $\mathbb{N}$, the intersection of any
two is finite) that is saturated (completely separable \emph{i.e.,} any
$X \subseteq \mathbb{N}$ is
included in a finite union of members of the family \emph{or} includes a
member (and even continuum many members) of the family).
We prove that it is hard to prove the consistency of the negation:
(i) if $2^{\aleph_0} \lt \aleph_\omega$, then there is such a family;
(ii) if there is no such family, then some situation
related to pcf holds whose consistency is large (and if ${\mathfrak a}_* \gt
\aleph_1$ even unknown);
(iii) if, \emph{e.g.,} there is no inner model with measurables,
\emph{then} there is such a family.
Keywords:set theory, MAD families, pcf, the continuum Categories:03E05, 03E04, 03E17 

16. CJM 2010 (vol 62 pp. 481)
 CasalsRuiz, Montserrat; Kazachkov, Ilya V.

Elements of Algebraic Geometry and the Positive Theory of Partially Commutative Groups
The first main result of the paper is a criterion for a partially commutative group $\mathbb G$ to be a domain. It allows us to reduce the study of algebraic sets over $\mathbb G$ to the study of irreducible algebraic sets, and reduce the elementary theory of $\mathbb G$ (of a coordinate group over $\mathbb G$) to the elementary theories of the direct factors of $\mathbb G$ (to the elementary theory of coordinate groups of irreducible algebraic sets). Then we establish normal forms for quantifierfree formulas over a nonabelian directly indecomposable partially commutative group $\mathbb H$. Analogously to the case of free groups, we introduce the notion of a generalised equation and prove that the positive theory of $\mathbb H$ has quantifier elimination and that arbitrary firstorder formulas lift from $\mathbb H$ to $\mathbb H\ast F$, where $F$ is a free group of finite rank. As a consequence, the positive theory of an arbitrary partially commutative group is decidable.
Categories:20F10, 03C10, 20F06 

17. CJM 2009 (vol 61 pp. 604)
 Hart, Joan E.; Kunen, Kenneth

First Countable Continua and Proper Forcing
Assuming the Continuum Hypothesis,
there is a compact, first countable, connected space of weight $\aleph_1$
with no totally disconnected perfect subsets.
Each such space, however, may be destroyed by
some proper forcing order which does not add reals.
Keywords:connected space, Continuum Hypothesis, proper forcing, irreducible map Categories:54D05, 03E35 

18. CJM 2008 (vol 60 pp. 88)
 Diwadkar, Jyotsna Mainkar

Nilpotent Conjugacy Classes in $p$adic Lie Algebras: The Odd Orthogonal Case
We will study the following question: Are nilpotent conjugacy
classes of reductive Lie algebras over $p$adic fields
definable? By definable, we mean definable by a formula in Pas's
language. In this language, there are no field extensions and no
uniformisers. Using Waldspurger's parametrization, we answer in the
affirmative in the case of special orthogonal Lie algebras
$\mathfrak{so}(n)$ for $n$ odd, over $p$adic fields.
Categories:17B10, 03C60 

19. CJM 2007 (vol 59 pp. 575)
20. CJM 2006 (vol 58 pp. 768)
 Hu, Zhiguo; Neufang, Matthias

Decomposability of von Neumann Algebras and the Mazur Property of Higher Level
The decomposability
number of a von Neumann algebra $\m$ (denoted by $\dec(\m)$) is the
greatest cardinality of a family of pairwise orthogonal nonzero
projections in $\m$. In this paper, we explore the close
connection between $\dec(\m)$ and the cardinal level of the Mazur
property for the predual $\m_*$ of $\m$, the study of which was
initiated by the second author. Here, our main focus is on
those von Neumann algebras whose preduals constitute such
important Banach algebras on a locally compact group $G$ as the
group algebra $\lone$, the Fourier algebra $A(G)$, the measure
algebra $M(G)$, the algebra $\luc^*$, etc. We show that for
any of these von Neumann algebras, say $\m$, the cardinal number
$\dec(\m)$ and a certain cardinal level of the Mazur property of $\m_*$
are completely encoded in the underlying group structure. In fact,
they can be expressed precisely by two dual cardinal
invariants of $G$: the compact covering number $\kg$ of $G$ and
the least cardinality $\bg$ of an open basis at the identity of
$G$. We also present an application of the Mazur property of higher
level to the topological centre problem for the Banach algebra
$\ag^{**}$.
Keywords:Mazur property, predual of a von Neumann algebra, locally compact group and its cardinal invariants, group algebra, Fourier algebra, topological centre Categories:22D05, 43A20, 43A30, 03E55, 46L10 

21. CJM 2005 (vol 57 pp. 1139)
22. CJM 2005 (vol 57 pp. 471)
 Ciesielski, Krzysztof; Pawlikowski, Janusz

Small Coverings with Smooth Functions under the Covering Property Axiom
In the paper we formulate a Covering Property Axiom, \psmP,
which holds in the iterated perfect set model,
and show that it implies the following facts,
of which (a) and (b) are the generalizations
of results of J. Stepr\={a}ns.
\begin{compactenum}[\rm(a)~~]
\item There exists a family $\F$ of less than continuum many $\C^1$
functions from $\real$ to $\real$ such that $\real^2$ is covered
by functions from $\F$, in the sense that for every $\la
x,y\ra\in\real^2$ there exists an $f\in\F$ such that either
$f(x)=y$ or $f(y)=x$.
\item For every Borel function $f\colon\real\to\real$ there exists a
family $\F$ of less than continuum many ``$\C^1$'' functions ({\em
i.e.,} differentiable functions with continuous derivatives, where
derivative can be infinite) whose graphs cover the graph of $f$.
\item For every $n>0$ and
a $D^n$ function $f\colon\real\to\real$ there exists
a family $\F$ of less than continuum many $\C^n$ functions
whose graphs cover the graph of $f$.
\end{compactenum}
We also provide the examples showing that in the above properties
the smoothness conditions are the best possible. Parts (b), (c),
and the examples are closely related to work of
A. Olevski\v{\i}.
Keywords:continuous, smooth, covering Categories:26A24, 03E35 

23. CJM 1999 (vol 51 pp. 309)
 Leung, Denny H.; Tang, WeeKee

Symmetric sequence subspaces of $C(\alpha)$, II
If $\alpha$ is an ordinal, then the space of all ordinals less than or
equal to $\alpha$ is a compact Hausdorff space when endowed with the
order topology. Let $C(\alpha)$ be the space of all continuous
realvalued functions defined on the ordinal interval $[0,
\alpha]$. We characterize the symmetric sequence spaces which embed
into $C(\alpha)$ for some countable ordinal $\alpha$. A hierarchy
$(E_\alpha)$ of symmetric sequence spaces is constructed so that, for
each countable ordinal $\alpha$, $E_\alpha$ embeds into
$C(\omega^{\omega^\alpha})$, but does not embed into
$C(\omega^{\omega^\beta})$ for any $\beta < \alpha$.
Categories:03E13, 03E15, 46B03, 46B45, 46E15, 54G12 

24. CJM 1997 (vol 49 pp. 1089)
 Burke, Maxim R.; Ciesielski, Krzysztof

Sets on which measurable functions are determined by their range
We study sets on which measurable realvalued functions on a
measurable space with negligibles are determined by their range.
Keywords:measurable function, measurable space with negligibles, continuous image, set of range uniqueness (SRU) Categories:28A20, 28A05, 54C05, 26A30, 03E35, 03E50 

25. CJM 1997 (vol 49 pp. 641)
 Burris, Stanley; Compton, Kevin; Odlyzko, Andrew; Richmond, Bruce

Fine spectra and limit laws II Firstorder 01 laws.
Using FefermanVaught techniques a condition on the fine
spectrum of an admissible class of structures is found
which leads to a firstorder 01 law.
The condition presented is best possible in the
sense that if it is violated then one can find an admissible
class with the same fine spectrum which does not have
a firstorder 01 law.
If the condition is satisfied (and hence we have a firstorder %% 01 law)
Categories:03N45, 11N45, 11N80, 05A15, 05A16, 11M41, 11P81 
