Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword symmetric function

  Expand all        Collapse all Results 1 - 5 of 5

1. CJM Online first

Tuxanidy, Aleksandr; Wang, Qiang
A new proof of the Hansen-Mullen irreducibility conjecture
We give a new proof of the Hansen-Mullen irreducibility conjecture. The proof relies on an application of a (seemingly new) sufficient condition for the existence of elements of degree $n$ in the support of functions on finite fields. This connection to irreducible polynomials is made via the least period of the discrete Fourier transform (DFT) of functions with values in finite fields. We exploit this relation and prove, in an elementary fashion, that a relevant function related to the DFT of characteristic elementary symmetric functions (which produce the coefficients of characteristic polynomials) satisfies a simple requirement on the least period. This bears a sharp contrast to previous techniques in literature employed to tackle existence of irreducible polynomials with prescribed coefficients.

Keywords:irreducible polynomial, primitive polynomial, Hansen-Mullen conjecture, symmetric function, $q$-symmetric, discrete Fourier transform, finite field

2. CJM 2016 (vol 69 pp. 21)

Grinberg, Darij
Dual Creation Operators and a Dendriform Algebra Structure on the Quasisymmetric Functions
The dual immaculate functions are a basis of the ring $\operatorname*{QSym}$ of quasisymmetric functions, and form one of the most natural analogues of the Schur functions. The dual immaculate function corresponding to a composition is a weighted generating function for immaculate tableaux in the same way as a Schur function is for semistandard Young tableaux; an " immaculate tableau" is defined similarly to be a semistandard Young tableau, but the shape is a composition rather than a partition, and only the first column is required to strictly increase (whereas the other columns can be arbitrary; but each row has to weakly increase). Dual immaculate functions have been introduced by Berg, Bergeron, Saliola, Serrano and Zabrocki in arXiv:1208.5191, and have since been found to possess numerous nontrivial properties. In this note, we prove a conjecture of Mike Zabrocki which provides an alternative construction for the dual immaculate functions in terms of certain "vertex operators". The proof uses a dendriform structure on the ring $\operatorname*{QSym}$; we discuss the relation of this structure to known dendriform structures on the combinatorial Hopf algebras $\operatorname*{FQSym}$ and $\operatorname*{WQSym}$.

Keywords:combinatorial Hopf algebras, quasisymmetric functions, dendriform algebras, immaculate functions, Young tableaux

3. CJM 2013 (vol 66 pp. 525)

Berg, Chris; Bergeron, Nantel; Saliola, Franco; Serrano, Luis; Zabrocki, Mike
A Lift of the Schur and Hall-Littlewood Bases to Non-commutative Symmetric Functions
We introduce a new basis of the algebra of non-commutative symmetric functions whose images under the forgetful map are Schur functions when indexed by a partition. Dually, we build a basis of the quasi-symmetric functions which expand positively in the fundamental quasi-symmetric functions. We then use the basis to construct a non-commutative lift of the Hall-Littlewood symmetric functions with similar properties to their commutative counterparts.

Keywords:Hall-Littlewood polynomial, symmetric function, quasisymmetric function, tableau

4. CJM 2011 (vol 64 pp. 822)

Haglund, J.; Morse, J.; Zabrocki, M.
A Compositional Shuffle Conjecture Specifying Touch Points of the Dyck Path
We introduce a $q,t$-enumeration of Dyck paths that are forced to touch the main diagonal at specific points and forbidden to touch elsewhere and conjecture that it describes the action of the Macdonald theory $\nabla$ operator applied to a Hall--Littlewood polynomial. Our conjecture refines several earlier conjectures concerning the space of diagonal harmonics including the ``shuffle conjecture" (Duke J. Math. $\mathbf {126}$ ($2005$), 195-232) for $\nabla e_n[X]$. We bring to light that certain generalized Hall--Littlewood polynomials indexed by compositions are the building blocks for the algebraic combinatorial theory of $q,t$-Catalan sequences, and we prove a number of identities involving these functions.

Keywords:Dyck Paths, Parking functions, Hall--Littlewood symmetric functions
Categories:05E05, 33D52

5. CJM 2001 (vol 53 pp. 470)

Bauschke, Heinz H.; G├╝ler, Osman; Lewis, Adrian S.; Sendov, Hristo S.
Hyperbolic Polynomials and Convex Analysis
A homogeneous real polynomial $p$ is {\em hyperbolic} with respect to a given vector $d$ if the univariate polynomial $t \mapsto p(x-td)$ has all real roots for all vectors $x$. Motivated by partial differential equations, G{\aa}rding proved in 1951 that the largest such root is a convex function of $x$, and showed various ways of constructing new hyperbolic polynomials. We present a powerful new such construction, and use it to generalize G{\aa}rding's result to arbitrary symmetric functions of the roots. Many classical and recent inequalities follow easily. We develop various convex-analytic tools for such symmetric functions, of interest in interior-point methods for optimization problems over related cones.

Keywords:convex analysis, eigenvalue, G{\aa}rding's inequality, hyperbolic barrier function, hyperbolic polynomial, hyperbolicity cone, interior-point method, semidefinite program, singular value, symmetric function
Categories:90C25, 15A45, 52A41

© Canadian Mathematical Society, 2017 :