1. CJM 2009 (vol 62 pp. 646)
 Rupp, R.; Sasane, A.

Reducibility in A_{R}(K), C_{R}(K), and A(K)
Let $K$ denote a compact real symmetric subset of $\mathbb{C}$ and let
$A_{\mathbb R}(K)$ denote the real Banach algebra of all real
symmetric continuous functions on $K$ that are analytic in the
interior $K^\circ$ of $K$, endowed with the supremum norm. We
characterize all unimodular pairs $(f,g)$ in $A_{\mathbb R}(K)^2$
which are reducible.
In addition, for an arbitrary compact $K$ in $\mathbb C$, we give a
new proof (not relying on Banach algebra theory or elementary stable
rank techniques) of the fact that the Bass stable rank of $A(K)$ is
$1$.
Finally, we also characterize all compact real symmetric sets $K$ such
that $A_{\mathbb R}(K)$, respectively $C_{\mathbb R}(K)$, has Bass
stable rank $1$.
Keywords:real Banach algebras, Bass stable rank, topological stable rank, reducibility Categories:46J15, 19B10, 30H05, 93D15 

2. CJM 2001 (vol 53 pp. 592)
 Perera, Francesc

Ideal Structure of Multiplier Algebras of Simple $C^*$algebras With Real Rank Zero
We give a description of the monoid of Murrayvon Neumann equivalence
classes of projections for multiplier algebras of a wide class of
$\sigma$unital simple $C^\ast$algebras $A$ with real rank zero and stable
rank one. The lattice of ideals of this monoid, which is known to be
crucial for understanding the ideal structure of the multiplier
algebra $\mul$, is therefore analyzed. In important cases it is shown
that, if $A$ has finite scale then the quotient of $\mul$ modulo any
closed ideal $I$ that properly contains $A$ has stable rank one. The
intricacy of the ideal structure of $\mul$ is reflected in the fact
that $\mul$ can have uncountably many different quotients, each one
having uncountably many closed ideals forming a chain with respect to
inclusion.
Keywords:$C^\ast$algebra, multiplier algebra, real rank zero, stable rank, refinement monoid Categories:46L05, 46L80, 06F05 
