1. CJM Online first
 Xia, Eugene Z.

The algebraic de Rham cohomology of representation varieties
The $\operatorname{SL}(2,\mathbb C)$representation varieties of punctured surfaces
form natural families parameterized by monodromies at the punctures.
In this paper, we compute the loci where these varieties are
singular for the cases of oneholed and twoholed tori and the
fourholed sphere. We then compute the de Rham cohomologies
of these varieties of the oneholed torus and the fourholed
sphere when the varieties are smooth via the Grothendieck theorem.
Furthermore, we produce the explicit GaussManin connection
on the natural family of the smooth $\operatorname{SL}(2,\mathbb C)$representation
varieties of the oneholed torus.
Keywords:surface, algebraic group, representation variety, de Rham cohomology Categories:14H10, 13D03, 14F40, 14H24, 14Q10, 14R20 

2. CJM Online first
 Bremner, Murray; Dotsenko, Vladimir

Classification of regular parametrized onerelation operads
JeanLouis Loday introduced a class of symmetric operads generated
by one bilinear operation subject to one
relation making each leftnormed product of three elements equal
to a linear combination
of rightnormed products:
\[
(a_1a_2)a_3=\sum_{\sigma\in S_3}x_\sigma\, a_{\sigma(1)}(a_{\sigma(2)}a_{\sigma(3)})\
;
\]
such an operad is called a parametrized onerelation operad.
For a particular choice of parameters $\{x_\sigma\}$,
this operad is said to be regular if each of its components is
the regular representation of the symmetric group; equivalently, the corresponding free algebra on a vector space $V$ is, as a
graded vector space, isomorphic to the tensor
algebra of $V$. We classify, over an algebraically closed field
of characteristic zero, all regular parametrized onerelation
operads.
In fact, we prove that each such operad is isomorphic to one
of the following five operads: the leftnilpotent operad
defined by the relation $((a_1a_2)a_3)=0$, the associative operad,
the Leibniz operad, the dual Leibniz (Zinbiel) operad, and the
Poisson operad.
Our computational methods combine linear algebra over polynomial
rings, representation theory of the symmetric group, and
GrÃ¶bner bases for determinantal ideals and their radicals.
Keywords:parametrized onerelation algebra, algebraic operad, Koszul duality, representation theory of the symmetric group, determinantal ideal, GrÃ¶bner basis Categories:18D50, 13B25, 13P10, 13P15, 15A54, 1704, , , , , 17A30, 17A50, 20C30, 68W30 

3. CJM Online first
 Matringe, Nadir; Offen, Omer

Gamma factors, root numbers, and distinction
We study a relation between distinction and special values of
local invariants for representations of the general linear group
over a quadratic extension of $p$adic fields.
We show that the local RankinSelberg root number of any pair
of distinguished representation is trivial and as a corollary
we obtain an analogue for the global root number of any pair
of distinguished cuspidal representations. We further study the
extent to which the gamma factor at $1/2$ is trivial for distinguished
representations as well as the converse problem.
Keywords:distinguished representation, local constant Category:11F70 

4. CJM Online first
 Ghaani Farashahi, Arash

A Class of Abstract Linear Representations for Convolution Function Algebras over Homogeneous Spaces of Compact Groups
This paper introduces a class of abstract linear representations
on
Banach convolution function algebras over
homogeneous spaces of compact groups. Let $G$ be a compact group
and $H$ be a closed subgroup of $G$.
Let $\mu$ be the normalized $G$invariant measure over the compact
homogeneous space $G/H$ associated to the
Weil's formula and $1\le p\lt \infty$.
We then present a structured class of abstract linear representations
of the
Banach convolution function algebras $L^p(G/H,\mu)$.
Keywords:homogeneous space, linear representation, continuous unitary representation, convolution function algebra, compact group, convolution, involution Categories:43A85, 47A67, 20G05 

5. CJM Online first
 Varma, Sandeep

On Residues of Intertwining Operators in Cases with Prehomogeneous Nilradical
Let $\operatorname{P} = \operatorname{M} \operatorname{N}$ be a Levi decomposition of a maximal parabolic
subgroup of a connected
reductive group $\operatorname{G}$ over a $p$adic field $F$. Assume that there
exists $w_0 \in \operatorname{G}(F)$ that normalizes $\operatorname{M}$ and conjugates $\operatorname{P}$
to an opposite parabolic subgroup.
When $\operatorname{N}$ has a Zariski dense $\operatorname{Int} \operatorname{M}$orbit,
F. Shahidi and X. Yu describe a certain distribution $D$ on
$\operatorname{M}(F)$
such that,
for irreducible unitary supercuspidal representations $\pi$ of
$\operatorname{M}(F)$ with
$\pi \cong \pi \circ \operatorname{Int} w_0$,
$\operatorname{Ind}_{\operatorname{P}(F)}^{\operatorname{G}(F)} \pi$ is
irreducible
if and only if $D(f) \neq 0$ for some pseudocoefficient $f$ of
$\pi$. Since
this irreducibility is conjecturally related to $\pi$ arising
via
transfer from certain twisted endoscopic groups of $\operatorname{M}$, it is
of interest
to realize $D$ as endoscopic transfer from a simpler distribution
on a twisted
endoscopic group $\operatorname{H}$ of $\operatorname{M}$. This has been done in many situations
where $\operatorname{N}$ is abelian. Here, we handle the `standard examples'
in cases
where $\operatorname{N}$ is nonabelian but admits a Zariski dense
$\operatorname{Int} \operatorname{M}$orbit.
Keywords:induced representation, intertwining operator, endoscopy Categories:22E50, 11F70 

6. CJM 2016 (vol 69 pp. 186)
 Pan, ShuYen

$L$Functoriality for Local Theta Correspondence of Supercuspidal Representations with Unipotent Reduction
The preservation principle of local theta correspondences of reductive dual pairs over
a $p$adic field predicts the existence of a sequence of irreducible supercuspidal
representations of classical groups.
Adams/HarrisKudlaSweet
have a conjecture
about the Langlands parameters for the sequence of supercuspidal representations.
In this paper we prove modified versions of their conjectures for the case of
supercuspidal representations with unipotent reduction.
Keywords:local theta correspondence, supercuspidal representation, preservation principle, Langlands functoriality Categories:22E50, 11F27, 20C33 

7. CJM 2016 (vol 69 pp. 107)
 Kamgarpour, Masoud

On the Notion of Conductor in the Local Geometric Langlands Correspondence
Under the local Langlands correspondence, the conductor of an
irreducible representation of $\operatorname{Gl}_n(F)$ is greater than the
Swan conductor of the corresponding Galois representation. In
this paper, we establish the geometric analogue of this statement
by showing that the conductor of a categorical representation
of the loop group is greater than the irregularity of the corresponding
meromorphic connection.
Keywords:local geometric Langlands, connections, cyclic vectors, opers, conductors, SegalSugawara operators, ChervovMolev operators, critical level, smooth representations, affine KacMoody algebra, categorical representations Categories:17B67, 17B69, 22E50, 20G25 

8. CJM 2016 (vol 69 pp. 453)
 Marquis, Timothée; Neeb, KarlHermann

Isomorphisms of Twisted Hilbert Loop Algebras
The closest infinite dimensional relatives of compact Lie algebras are HilbertLie algebras, i.e. real Hilbert spaces with a Lie
algebra
structure for which the scalar product is invariant.
Locally affine Lie algebras (LALAs)
correspond to double extensions of (twisted) loop algebras
over simple HilbertLie algebras $\mathfrak{k}$, also called
affinisations of $\mathfrak{k}$.
They possess a root space decomposition
whose corresponding root system is a locally affine root system
of one of the $7$ families $A_J^{(1)}$, $B_J^{(1)}$, $C_J^{(1)}$,
$D_J^{(1)}$, $B_J^{(2)}$, $C_J^{(2)}$ and $BC_J^{(2)}$ for some
infinite set $J$. To each of these types corresponds a ``minimal"
affinisation of some simple HilbertLie algebra $\mathfrak{k}$,
which we call standard.
In this paper, we give for each affinisation $\mathfrak{g}$ of
a simple HilbertLie algebra $\mathfrak{k}$ an explicit isomorphism
from $\mathfrak{g}$ to one of the standard affinisations of $\mathfrak{k}$. The existence of such an isomorphism could also be derived from
the classification
of locally affine root systems, but
for representation theoretic purposes it is crucial to obtain
it explicitly
as a deformation between two twists which is compatible
with the root decompositions.
We illustrate this by applying our isomorphism theorem to the
study of positive energy highest weight representations of $\mathfrak{g}$.
In subsequent work, the present paper will be used to obtain
a complete classification
of the positive energy highest weight representations of affinisations
of $\mathfrak{k}$.
Keywords:locally affine Lie algebra, HilbertLie algebra, positive energy representation Categories:17B65, 17B70, 17B22, 17B10 

9. CJM 2016 (vol 68 pp. 908)
 Sugiyama, Shingo; Tsuzuki, Masao

Existence of Hilbert Cusp Forms with Nonvanishing $L$values
We develop a derivative version of the relative trace formula
on $\operatorname{PGL}(2)$ studied in our previous work,
and derive an asymptotic formula of an average of central values
(derivatives)
of automorphic $L$functions for Hilbert cusp forms.
As an application, we prove the existence of Hilbert cusp forms
with nonvanishing central values (derivatives)
such that the absolute degrees of their Hecke fields are arbitrarily
large.
Keywords:automorphic representations, relative trace formulas, central $L$values, derivatives of $L$functions Categories:11F67, 11F72 

10. CJM 2016 (vol 68 pp. 395)
 Garibaldi, Skip; Nakano, Daniel K.

Bilinear and Quadratic Forms on Rational Modules of Split Reductive Groups
The representation theory of semisimple algebraic groups over
the complex numbers (equivalently, semisimple complex Lie algebras
or Lie groups, or real compact Lie groups) and the question of
whether a
given complex representation is symplectic or orthogonal has
been solved since at least the 1950s. Similar results for Weyl
modules of split reductive groups over fields of characteristic
different from 2 hold by
using similar proofs. This paper considers analogues of these
results for simple, induced and tilting modules of split reductive
groups over fields of prime characteristic as well as a complete
answer for Weyl modules over fields of characteristic 2.
Keywords:orthogonal representations, symmetric tensors, alternating forms, characteristic 2, split reductive groups Categories:20G05, 11E39, 11E88, 15A63, 20G15 

11. CJM 2015 (vol 68 pp. 179)
 Takeda, Shuichiro

Metaplectic Tensor Products for Automorphic Representation of $\widetilde{GL}(r)$
Let $M=\operatorname{GL}_{r_1}\times\cdots\times\operatorname{GL}_{r_k}\subseteq\operatorname{GL}_r$ be a Levi
subgroup of $\operatorname{GL}_r$, where $r=r_1+\cdots+r_k$, and $\widetilde{M}$ its metaplectic preimage
in the $n$fold metaplectic cover $\widetilde{\operatorname{GL}}_r$ of $\operatorname{GL}_r$. For automorphic
representations $\pi_1,\dots,\pi_k$ of $\widetilde{\operatorname{GL}}_{r_1}(\mathbb{A}),\dots,\widetilde{\operatorname{GL}}_{r_k}(\mathbb{A})$,
we construct (under a certain
technical assumption, which is always satisfied when $n=2$) an
automorphic representation $\pi$
of $\widetilde{M}(\mathbb{A})$ which can be considered as the ``tensor product'' of the
representations $\pi_1,\dots,\pi_k$. This is
the global analogue of the metaplectic tensor product
defined by P. Mezo in the sense that locally at each place $v$,
$\pi_v$ is equivalent to the local metaplectic tensor product of
$\pi_{1,v},\dots,\pi_{k,v}$ defined by Mezo. Then we show that if all
of $\pi_i$ are cuspidal (resp. squareintegrable modulo center), then
the metaplectic tensor product is cuspidal (resp. squareintegrable
modulo center). We also show that (both
locally and globally) the metaplectic tensor product behaves in the
expected way under the action of a Weyl group element, and show the
compatibility with parabolic inductions.
Keywords:automorphic forms, representations of covering groups Category:11F70 

12. CJM 2015 (vol 68 pp. 258)
 Calixto, Lucas; Moura, Adriano; Savage, Alistair

Equivariant Map Queer Lie Superalgebras
An equivariant map queer Lie superalgebra is the Lie superalgebra
of regular maps from an algebraic variety (or scheme) $X$ to
a queer Lie superalgebra $\mathfrak{q}$ that are equivariant with respect
to the action of a finite group $\Gamma$ acting on $X$ and $\mathfrak{q}$.
In this paper, we classify all irreducible finitedimensional
representations of the equivariant map queer Lie superalgebras
under the assumption that $\Gamma$ is abelian and acts freely
on $X$. We show that such representations are parameterized
by a certain set of $\Gamma$equivariant finitely supported maps
from $X$ to the set of isomorphism classes of irreducible finitedimensional
representations of $\mathfrak{q}$. In the special case where $X$ is the
torus, we obtain a classification of the irreducible finitedimensional
representations of the twisted loop queer superalgebra.
Keywords:Lie superalgebra, queer Lie superalgebra, loop superalgebra, equivariant map superalgebra, finitedimensional representation, finitedimensional module Categories:17B65, 17B10 

13. CJM 2015 (vol 67 pp. 481)
 an Huef, Astrid; Archbold, Robert John

The C*algebras of Compact Transformation Groups
We investigate the representation theory of the
crossedproduct $C^*$algebra associated to a compact group $G$
acting on a locally compact space $X$ when the stability subgroups
vary discontinuously.
Our main result applies when $G$ has a principal stability subgroup or
$X$ is locally of finite $G$orbit type. Then the upper multiplicity
of the representation of the crossed product induced from an
irreducible representation $V$ of a stability subgroup is obtained by
restricting $V$ to a certain closed subgroup of the stability subgroup
and taking the maximum of the multiplicities of the irreducible
summands occurring in the restriction of $V$. As a corollary we obtain
that when the trivial subgroup is a principal stability subgroup, the
crossed product is a Fell algebra if and only if every stability
subgroup is abelian. A second corollary is that the $C^*$algebra of
the motion group $\mathbb{R}^n\rtimes \operatorname{SO}(n)$ is a Fell algebra. This uses
the classical branching theorem for the special orthogonal group
$\operatorname{SO}(n)$ with respect to $\operatorname{SO}(n1)$. Since proper transformation
groups are locally induced from the actions of compact groups, we
describe how some of our results can be extended to transformation
groups that are locally proper.
Keywords:compact transformation group, proper action, spectrum of a C*algebra, multiplicity of a representation, crossedproduct C*algebra, continuoustrace C*algebra, Fell algebra Categories:46L05, 46L55 

14. CJM 2014 (vol 67 pp. 1024)
 Ashraf, Samia; Azam, Haniya; Berceanu, Barbu

Representation Stability of Power Sets and Square Free Polynomials
The symmetric group $\mathcal{S}_n$ acts on the power
set $\mathcal{P}(n)$ and also on the set of
square free polynomials in $n$ variables. These
two related representations are analyzed from the stability point
of view. An application is given for the action of the symmetric
group on the cohomology of the pure braid group.
Keywords:symmetric group modules, square free polynomials, representation stability, Arnold algebra Categories:20C30, 13A50, 20F36, 55R80 

15. CJM 2014 (vol 67 pp. 315)
 Bellaïche, Joël

Unitary Eigenvarieties at Isobaric Points
In this article we
study the geometry of the eigenvarieties of unitary groups at points
corresponding to tempered nonstable representations with an
antiordinary (a.k.a evil) refinement. We prove that, except in the
case the Galois representation attached to the automorphic form is a
sum of characters, the eigenvariety is nonsmooth at such a point,
and that (under some additional hypotheses) its tangent space is big
enough to account for all the relevant Selmer group. We also study the
local reducibility locus
at those points, proving that in general, in contrast with the case of
the eigencurve, it is a proper subscheme of the fiber of the
eigenvariety over the weight space.
Keywords:eigenvarieties, Galois representations, Selmer groups 

16. CJM 2014 (vol 66 pp. 1201)
 Adler, Jeffrey D.; Lansky, Joshua M.

Lifting Representations of Finite Reductive Groups I: Semisimple Conjugacy Classes
Suppose that $\tilde{G}$ is a connected reductive group
defined over a field $k$, and
$\Gamma$ is a finite group acting via $k$automorphisms
of $\tilde{G}$ satisfying a certain quasisemisimplicity condition.
Then the identity component of the group of $\Gamma$fixed points
in $\tilde{G}$ is reductive.
We axiomatize the main features of the relationship between this
fixedpoint group and the pair $(\tilde{G},\Gamma)$,
and consider any group $G$ satisfying the axioms.
If both $\tilde{G}$ and $G$ are $k$quasisplit, then we
can consider their duals $\tilde{G}^*$ and $G^*$.
We show the existence of and give an explicit formula for a natural
map from the set of semisimple stable conjugacy classes in $G^*(k)$
to the analogous set for $\tilde{G}^*(k)$.
If $k$ is finite, then our groups are automatically quasisplit,
and our result specializes to give a map
of semisimple conjugacy classes.
Since such classes parametrize packets of irreducible representations
of $G(k)$ and $\tilde{G}(k)$, one obtains a mapping of such packets.
Keywords:reductive group, lifting, conjugacy class, representation, Lusztig series Categories:20G15, 20G40, 20C33, 22E35 

17. CJM 2014 (vol 67 pp. 28)
 Asadollahi, Javad; Hafezi, Rasool; Vahed, Razieh

Bounded Derived Categories of Infinite Quivers: Grothendieck Duality, Reflection Functor
We study bounded derived categories of the category of representations of infinite quivers over a ring $R$. In case $R$ is a commutative noetherian ring with a dualising complex, we investigate an equivalence similar to Grothendieck duality for these categories, while a notion of dualising complex does not apply to them. The quivers we consider are left, resp. right, rooted quivers that are either noetherian or their opposite are noetherian. We also consider reflection functor and generalize a result of Happel to noetherian rings of finite global dimension, instead of fields.
Keywords:derived category, Grothendieck duality, representation of quivers, reflection functor Categories:18E30, 16G20, 18E40, 16D90, 18A40 

18. CJM 2014 (vol 67 pp. 573)
 Chen, Fulin; Gao, Yun; Jing, Naihuan; Tan, Shaobin

Twisted Vertex Operators and Unitary Lie Algebras
A representation of the central extension of the
unitary Lie algebra
coordinated with a skew Laurent polynomial ring
is constructed using vertex operators over an integral $\mathbb Z_2$lattice.
The irreducible decomposition of the representation is explicitly computed and described.
As a byproduct, some fundamental representations of affine
KacMoody Lie algebra of type $A_n^{(2)}$ are recovered
by the new method.
Keywords:Lie algebra, vertex operator, representation theory Categories:17B60, 17B69 

19. CJM 2013 (vol 66 pp. 1250)
 Feigin, Evgeny; Finkelberg, Michael; Littelmann, Peter

Symplectic Degenerate Flag Varieties
A simple finite dimensional module $V_\lambda$ of a simple complex
algebraic group $G$ is naturally endowed with a filtration induced by the PBWfiltration
of $U(\mathrm{Lie}\, G)$. The associated graded space $V_\lambda^a$ is a module
for the group $G^a$, which can be roughly described as a semidirect product of a
Borel subgroup of $G$ and a large commutative unipotent group $\mathbb{G}_a^M$. In analogy
to the flag variety $\mathcal{F}_\lambda=G.[v_\lambda]\subset \mathbb{P}(V_\lambda)$,
we call the closure
$\overline{G^a.[v_\lambda]}\subset \mathbb{P}(V_\lambda^a)$
of the $G^a$orbit through the highest weight line the degenerate flag variety $\mathcal{F}^a_\lambda$.
In general this is a
singular variety, but we conjecture that it has many nice properties similar to
that of Schubert varieties. In this paper we consider the case of $G$ being the symplectic group.
The symplectic case is important for the conjecture
because it is the first known case where even for fundamental weights $\omega$ the varieties
$\mathcal{F}^a_\omega$ differ from $\mathcal{F}_\omega$. We give an explicit
construction of the varieties $Sp\mathcal{F}^a_\lambda$ and construct desingularizations,
similar to the BottSamelson resolutions in the classical case. We prove that $Sp\mathcal{F}^a_\lambda$
are normal locally complete intersections with terminal and rational singularities.
We also show that these varieties are Frobenius split. Using the above mentioned results, we
prove an analogue of the BorelWeil theorem and obtain a $q$character formula
for the characters of irreducible $Sp_{2n}$modules via the AtiyahBottLefschetz fixed
points formula.
Keywords:Lie algebras, flag varieties, symplectic groups, representations Categories:14M15, 22E46 

20. CJM 2013 (vol 66 pp. 1287)
 Henniart, Guy; Sécherre, Vincent

Types et contragrÃ©dientes
Soit $\mathrm{G}$ un groupe rÃ©ductif $p$adique, et soit $\mathrm{R}$
un corps algÃ©briquement clos.
Soit $\pi$ une reprÃ©sentation lisse de $\mathrm{G}$ dans un espace
vectoriel $\mathrm{V}$ sur
$\mathrm{R}$.
Fixons un sousgroupe ouvert et compact $\mathrm{K}$ de $\mathrm{G}$ et une reprÃ©sentation
lisse irrÃ©ductible $\tau$ de $\mathrm{K}$ dans un espace vectoriel
$\mathrm{W}$ de dimension
finie sur $\mathrm{R}$.
Sur l'espace $\mathrm{Hom}_{\mathrm{K}(\mathrm{W},\mathrm{V})}$ agit l'algÃ¨bre
d'entrelacement $\mathscr{H}(\mathrm{G},\mathrm{K},\mathrm{W})$.
Nous examinons la compatibilitÃ© de ces constructions avec le passage aux
reprÃ©sentations contragrÃ©dientes $\mathrm{V}^Äe$ et $\mathrm{W}^Äe$, et donnons en
particulier des conditions sur $\mathrm{W}$ ou sur la caractÃ©ristique
de $\mathrm{R}$ pour que
le comportement soit semblable au cas des reprÃ©sentations complexes.
Nous prenons un point de vue abstrait, n'utilisant que des propriÃ©tÃ©s
gÃ©nÃ©rales de $\mathrm{G}$.
Nous terminons par une application Ã la thÃ©orie des types pour le groupe
$\mathrm{GL}_n$ et ses formes intÃ©rieures sur un corps local non archimÃ©dien.
Keywords:modular representations of padic reductive groups, types, contragredient, intertwining Category:22E50 

21. CJM 2013 (vol 66 pp. 1167)
 Rotger, Victor; de VeraPiquero, Carlos

Galois Representations Over Fields of Moduli and Rational Points on Shimura Curves
The purpose of this note is introducing a method for proving the
existence of no rational points on a coarse moduli space $X$ of abelian varieties
over a given number field $K$, in cases where the moduli problem is not fine and
points in $X(K)$ may not be represented by an abelian variety (with additional structure)
admitting a model over the field $K$. This is typically the case when the abelian
varieties that are being classified have even dimension. The main idea, inspired on
the work of Ellenberg and Skinner on the modularity of $\mathbb{Q}$curves, is that to a
point $P=[A]\in X(K)$ represented by an abelian variety $A/\bar K$ one may still
attach a Galois representation of $\operatorname{Gal}(\bar K/K)$ with values in the quotient
group $\operatorname{GL}(T_\ell(A))/\operatorname{Aut}(A)$, provided
$\operatorname{Aut}(A)$ lies in the centre of $\operatorname{GL}(T_\ell(A))$.
We exemplify our method in the cases where $X$ is a Shimura curve over an imaginary
quadratic field or an AtkinLehner quotient over $\mathbb{Q}$.
Keywords:Shimura curves, rational points, Galois representations, Hasse principle, BrauerManin obstruction Categories:11G18, 14G35, 14G05 

22. CJM 2013 (vol 66 pp. 566)
 Choiy, Kwangho

Transfer of Plancherel Measures for Unitary Supercuspidal Representations between $p$adic Inner Forms
Let $F$ be a $p$adic field of characteristic $0$, and let $M$ be an $F$Levi subgroup of a connected reductive $F$split group such that $\Pi_{i=1}^{r} SL_{n_i} \subseteq M \subseteq \Pi_{i=1}^{r} GL_{n_i}$ for positive integers $r$ and $n_i$. We prove that the Plancherel measure for any unitary supercuspidal representation of $M(F)$ is identically transferred under the local JacquetLanglands type correspondence between $M$ and its $F$inner forms, assuming a working hypothesis that Plancherel measures are invariant on a certain set. This work extends the result of
MuiÄ and Savin (2000) for Siegel Levi subgroups of the groups $SO_{4n}$ and $Sp_{4n}$ under the local JacquetLanglands correspondence. It can be applied to a simply connected simple $F$group of type $E_6$ or $E_7$, and a connected reductive $F$group of type $A_{n}$, $B_{n}$, $C_n$ or $D_n$.
Keywords:Plancherel measure, inner form, local to global global argument, cuspidal automorphic representation, JacquetLanglands correspondence Categories:22E50, 11F70, 22E55, 22E35 

23. CJM 2012 (vol 66 pp. 700)
 He, Jianxun; Xiao, Jinsen

Inversion of the Radon Transform on the Free Nilpotent Lie Group of Step Two
Let $F_{2n,2}$ be the free nilpotent Lie group of step two on $2n$
generators, and let $\mathbf P$ denote the affine automorphism group
of $F_{2n,2}$. In this article the theory of continuous wavelet
transform on $F_{2n,2}$ associated with $\mathbf P$ is developed,
and then a type of radial wavelets is constructed. Secondly, the
Radon transform on $F_{2n,2}$ is studied and two equivalent
characterizations of the range for Radon transform are given.
Several kinds of inversion Radon transform formulae
are established. One is obtained from the Euclidean Fourier transform, the others are from group Fourier transform. By using wavelet transform we deduce an inversion formula of the Radon
transform, which
does not require the smoothness of
functions if the wavelet satisfies the differentiability property.
Specially, if $n=1$, $F_{2,2}$ is the $3$dimensional Heisenberg group $H^1$, the
inversion formula of the Radon transform is valid which is
associated with the subLaplacian on $F_{2,2}$. This result cannot
be extended to the case $n\geq 2$.
Keywords:Radon transform, wavelet transform, free nilpotent Lie group, unitary representation, inversion formula, subLaplacian Categories:43A85, 44A12, 52A38 

24. CJM 2012 (vol 66 pp. 3)
 Abdesselam, Abdelmalek; Chipalkatti, Jaydeep

On Hilbert Covariants
Let $F$ denote a binary form of order $d$ over the
complex numbers. If $r$ is a divisor of $d$, then the Hilbert covariant
$\mathcal{H}_{r,d}(F)$ vanishes exactly when $F$ is the perfect power of an
order $r$ form. In geometric terms, the coefficients of $\mathcal{H}$ give
defining equations for the image variety $X$ of an embedding $\mathbf{P}^r
\hookrightarrow \mathbf{P}^d$. In this paper we describe a new construction of
the Hilbert covariant; and simultaneously situate it into a wider class of
covariants called the GÃ¶ttingen covariants, all of which vanish on
$X$. We prove that the ideal generated by the coefficients of $\mathcal{H}$
defines $X$ as a scheme. Finally, we exhibit a generalisation of the
GÃ¶ttingen covariants to $n$ary forms using the classical Clebsch transfer principle.
Keywords:binary forms, covariants, $SL_2$representations Categories:14L30, 13A50 

25. CJM 2012 (vol 64 pp. 721)
 Achab, Dehbia; Faraut, Jacques

Analysis of the BrylinskiKostant Model for Spherical Minimal Representations
We revisit with another view point the construction by R. Brylinski
and B. Kostant of minimal representations of simple Lie groups. We
start from a pair $(V,Q)$, where $V$ is a complex vector space and $Q$
a homogeneous polynomial of degree 4 on $V$.
The manifold $\Xi $ is an orbit of a covering of ${\rm Conf}(V,Q)$,
the conformal group of the pair $(V,Q)$, in a finite dimensional
representation space.
By a generalized KantorKoecherTits construction we obtain a complex
simple Lie algebra $\mathfrak g$, and furthermore a real
form ${\mathfrak g}_{\mathbb R}$. The connected and simply connected Lie
group $G_{\mathbb R}$ with ${\rm Lie}(G_{\mathbb R})={\mathfrak
g}_{\mathbb R}$ acts unitarily on a Hilbert space of holomorphic
functions defined on the manifold $\Xi $.
Keywords:minimal representation, KantorKoecherTits construction, Jordan algebra, Bernstein identity, Meijer $G$function Categories:17C36, 22E46, 32M15, 33C80 
