1. CJM Online first
 CorderoErausquin, Dario

Transport inequalities for logconcave measures, quantitative forms and applications
We review some simple techniques based on monotone mass transport
that allow us to obtain transporttype inequalities for any
logconcave
probability measure, and for more general measures as well. We
discuss quantitative forms of these inequalities, with application
to the BrascampLieb variance inequality.
Keywords:logconcave measures, transport inequality, BrascampLieb inequality, quantitative inequalities Categories:52A40, 60E15, 49Q20 

2. CJM 2016 (vol 69 pp. 284)
 Chen, Xianghong; Seeger, Andreas

Convolution Powers of Salem Measures with Applications
We study the regularity of convolution powers for measures supported
on
Salem sets, and prove related results on Fourier restriction
and Fourier multipliers. In particular we show
that for $\alpha$ of the form
${d}/{n}$, $n=2,3,\dots$ there exist $\alpha$Salem measures
for which the $L^2$ Fourier restriction theorem holds in the
range $p\le \frac{2d}{2d\alpha}$.
The results rely on ideas of KÃ¶rner.
We extend some of his constructions to obtain upper regular $\alpha$Salem
measures, with sharp regularity results for $n$fold convolutions
for all $n\in \mathbb{N}$.
Keywords:convolution powers, Fourier restriction, Salem sets, Salem measures, random sparse sets, Fourier multipliers of BochnerRiesz type Categories:42A85, 42B99, 42B15, 42A61 

3. CJM 2014 (vol 67 pp. 424)
 Samart, Detchat

Mahler Measures as Linear Combinations of $L$values of Multiple Modular Forms
We study the Mahler measures of certain families of Laurent
polynomials in two and three variables. Each of the known Mahler
measure formulas for these families involves $L$values of at most one
newform and/or at most one quadratic character. In this paper, we
show, either rigorously or numerically, that the Mahler measures of
some polynomials are related to $L$values of multiple newforms and
quadratic characters simultaneously. The results suggest that the
number of modular $L$values appearing in the formulas significantly
depends on the shape of the algebraic value of the parameter chosen
for each polynomial. As a consequence, we also obtain new formulas
relating special values of hypergeometric series evaluated at
algebraic numbers to special values of $L$functions.
Keywords:Mahler measures, EisensteinKronecker series, $L$functions, hypergeometric series Categories:11F67, 33C20 

4. CJM 2011 (vol 64 pp. 1075)
 Raja, Chandiraraj Robinson Edward

A Stochastic Difference Equation with Stationary Noise on Groups
We consider the stochastic difference equation $$\eta _k = \xi _k
\phi (\eta _{k1}), \quad k \in \mathbb Z $$ on a locally compact group $G$
where $\phi$ is an automorphism of $G$, $\xi _k$ are given $G$valued
random variables and $\eta _k$ are unknown $G$valued random variables.
This equation was considered by Tsirelson and Yor on
onedimensional torus. We consider the case when $\xi _k$ have a
common law $\mu$ and prove that if $G$ is a distal group and $\phi$
is a distal automorphism of $G$ and if the equation has a solution,
then extremal solutions of the equation are in oneone
correspondence with points on the coset space $K\backslash G$ for
some compact subgroup $K$ of $G$ such that $\mu$ is supported on
$Kz= z\phi (K)$ for any $z$ in the support of $\mu$. We also provide
a necessary and sufficient condition for the existence of solutions
to the equation.
Keywords:dissipating, distal automorphisms, probability measures, pointwise distal groups, shifted convolution powers Categories:60B15, 60G20 

5. CJM 2010 (vol 62 pp. 827)
 Ouyang, Caiheng; Xu, Quanhua

BMO Functions and Carleson Measures with Values in Uniformly Convex Spaces
This paper studies the relationship between vectorvalued BMO functions and the Carleson measures defined by their gradients. Let $dA$ and $dm$ denote Lebesgue measures on the unit disc $D$ and the unit circle $\mathbf{T}$, respectively. For $1< q<\infty$ and a Banach space $B$, we prove that there exists a positive constant $c$ such that $$\sup_{z_0\in D}\int_{D}(1z)^{q1}\\nabla f(z)\^q P_{z_0}(z) dA(z) \le c^q\sup_{z_0\in D}\int_{\mathbf{T}}\f(z)f(z_0)\^qP_{z_0}(z) dm(z)$$ holds for all trigonometric polynomials $f$ with coefficients in $B$ if and only if $B$ admits an equivalent norm which is $q$uniformly convex, where $$P_{z_0}(z)=\frac{1z_0^2}{1\bar{z_0}z^2} .$$ The validity of the converse inequality is equivalent to the existence of an equivalent $q$uniformly smooth norm.
Keywords:BMO, Carleson measures, Lusin type, Lusin cotype, uniformly convex spaces, uniformly smooth spaces Categories:46E40, 42B25, 46B20 

6. CJM 2009 (vol 61 pp. 124)
 Dijkstra, Jan J.; Mill, Jan van

Characterizing Complete Erd\H os Space
The space now known as {\em complete Erd\H os
space\/} $\cerdos$ was introduced by Paul Erd\H os in 1940 as the
closed subspace of the Hilbert space $\ell^2$ consisting of all
vectors such that every coordinate is in the convergent sequence
$\{0\}\cup\{1/n:n\in\N\}$. In a solution to a problem posed by Lex G.
Oversteegen we present simple and useful topological
characterizations of $\cerdos$.
As an application we determine the class
of factors of $\cerdos$. In another application we determine
precisely which of the spaces that can be constructed in the Banach
spaces $\ell^p$ according to the `Erd\H os method' are homeomorphic
to $\cerdos$. A novel application states that if $I$ is a
Polishable $F_\sigma$ideal on $\omega$, then $I$ with the Polish
topology is homeomorphic to either $\Z$, the Cantor set $2^\omega$,
$\Z\times2^\omega$, or $\cerdos$. This last result answers a
question that was asked
by Stevo Todor{\v{c}}evi{\'c}.
Keywords:Complete Erd\H os space, Lelek fan, almost zerodimensional, nowhere zerodimensional, Polishable ideals, submeasures on $\omega$, $\R$trees, linefree groups in Banach spaces Categories:28C10, 46B20, 54F65 

7. CJM 2006 (vol 58 pp. 401)
 Kolountzakis, Mihail N.; Révész, Szilárd Gy.

On Pointwise Estimates of Positive Definite Functions With Given Support
The following problem has been suggested by Paul Tur\' an. Let
$\Omega$ be a symmetric convex body in the Euclidean space $\mathbb R^d$
or in the torus $\TT^d$. Then, what is the largest possible value
of the integral of positive definite functions that are supported
in $\Omega$ and normalized with the value $1$ at the origin? From
this, Arestov, Berdysheva and Berens arrived at the analogous
pointwise extremal problem for intervals in $\RR$. That is, under
the same conditions and normalizations, the supremum of possible
function values at $z$ is to be found for any given point
$z\in\Omega$. However, it turns out that the problem for the real
line has already been solved by Boas and Kac, who gave several
proofs and also mentioned possible extensions to $\RR^d$ and to
nonconvex domains as well.
Here we present another approach to the problem, giving the
solution in $\RR^d$ and for several cases in~$\TT^d$. Actually, we
elaborate on the fact that the problem is essentially
onedimensional and investigate nonconvex open domains as well.
We show that the extremal problems are equivalent to some more
familiar ones concerning trigonometric polynomials, and thus find
the extremal values for a few cases. An analysis of the
relationship between the problem for $\RR^d$ and that for $\TT^d$
is given, showing that the former case is just the limiting case
of the latter. Thus the hierarchy of difficulty is established, so
that extremal problems for trigonometric polynomials gain renewed
recognition.
Keywords:Fourier transform, positive definite functions and measures, TurÃ¡n's extremal problem, convex symmetric domains, positive trigonometric polynomials, dual extremal problems Categories:42B10, 26D15, 42A82, 42A05 
