Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword intertwining

  Expand all        Collapse all Results 1 - 4 of 4

1. CJM 2016 (vol 69 pp. 1169)

Varma, Sandeep
On Residues of Intertwining Operators in Cases with Prehomogeneous Nilradical
Let $\operatorname{P} = \operatorname{M} \operatorname{N}$ be a Levi decomposition of a maximal parabolic subgroup of a connected reductive group $\operatorname{G}$ over a $p$-adic field $F$. Assume that there exists $w_0 \in \operatorname{G}(F)$ that normalizes $\operatorname{M}$ and conjugates $\operatorname{P}$ to an opposite parabolic subgroup. When $\operatorname{N}$ has a Zariski dense $\operatorname{Int} \operatorname{M}$-orbit, F. Shahidi and X. Yu describe a certain distribution $D$ on $\operatorname{M}(F)$ such that, for irreducible unitary supercuspidal representations $\pi$ of $\operatorname{M}(F)$ with $\pi \cong \pi \circ \operatorname{Int} w_0$, $\operatorname{Ind}_{\operatorname{P}(F)}^{\operatorname{G}(F)} \pi$ is irreducible if and only if $D(f) \neq 0$ for some pseudocoefficient $f$ of $\pi$. Since this irreducibility is conjecturally related to $\pi$ arising via transfer from certain twisted endoscopic groups of $\operatorname{M}$, it is of interest to realize $D$ as endoscopic transfer from a simpler distribution on a twisted endoscopic group $\operatorname{H}$ of $\operatorname{M}$. This has been done in many situations where $\operatorname{N}$ is abelian. Here, we handle the `standard examples' in cases where $\operatorname{N}$ is nonabelian but admits a Zariski dense $\operatorname{Int} \operatorname{M}$-orbit.

Keywords:induced representation, intertwining operator, endoscopy
Categories:22E50, 11F70

2. CJM 2013 (vol 66 pp. 1287)

Henniart, Guy; Sécherre, Vincent
Types et contragrédientes
Soit $\mathrm{G}$ un groupe réductif $p$-adique, et soit $\mathrm{R}$ un corps algébriquement clos. Soit $\pi$ une représentation lisse de $\mathrm{G}$ dans un espace vectoriel $\mathrm{V}$ sur $\mathrm{R}$. Fixons un sous-groupe ouvert et compact $\mathrm{K}$ de $\mathrm{G}$ et une représentation lisse irréductible $\tau$ de $\mathrm{K}$ dans un espace vectoriel $\mathrm{W}$ de dimension finie sur $\mathrm{R}$. Sur l'espace $\mathrm{Hom}_{\mathrm{K}(\mathrm{W},\mathrm{V})}$ agit l'algèbre d'entrelacement $\mathscr{H}(\mathrm{G},\mathrm{K},\mathrm{W})$. Nous examinons la compatibilité de ces constructions avec le passage aux représentations contragrédientes $\mathrm{V}^ėe$ et $\mathrm{W}^ėe$, et donnons en particulier des conditions sur $\mathrm{W}$ ou sur la caractéristique de $\mathrm{R}$ pour que le comportement soit semblable au cas des représentations complexes. Nous prenons un point de vue abstrait, n'utilisant que des propriétés générales de $\mathrm{G}$. Nous terminons par une application à la théorie des types pour le groupe $\mathrm{GL}_n$ et ses formes intérieures sur un corps local non archimédien.

Keywords:modular representations of p-adic reductive groups, types, contragredient, intertwining

3. CJM 2011 (vol 63 pp. 1238)

Bump, Daniel; Nakasuji, Maki
Casselman's Basis of Iwahori Vectors and the Bruhat Order
W. Casselman defined a basis $f_u$ of Iwahori fixed vectors of a spherical representation $(\pi, V)$ of a split semisimple $p$-adic group $G$ over a nonarchimedean local field $F$ by the condition that it be dual to the intertwining operators, indexed by elements $u$ of the Weyl group $W$. On the other hand, there is a natural basis $\psi_u$, and one seeks to find the transition matrices between the two bases. Thus, let $f_u = \sum_v \tilde{m} (u, v) \psi_v$ and $\psi_u = \sum_v m (u, v) f_v$. Using the Iwahori-Hecke algebra we prove that if a combinatorial condition is satisfied, then $m (u, v) = \prod_{\alpha} \frac{1 - q^{- 1} \mathbf{z}^{\alpha}}{1 -\mathbf{z}^{\alpha}}$, where $\mathbf z$ are the Langlands parameters for the representation and $\alpha$ runs through the set $S (u, v)$ of positive coroots $\alpha \in \hat{\Phi}$ (the dual root system of $G$) such that $u \leqslant v r_{\alpha} < v$ with $r_{\alpha}$ the reflection corresponding to $\alpha$. The condition is conjecturally always satisfied if $G$ is simply-laced and the Kazhdan-Lusztig polynomial $P_{w_0 v, w_0 u} = 1$ with $w_0$ the long Weyl group element. There is a similar formula for $\tilde{m}$ conjecturally satisfied if $P_{u, v} = 1$. This leads to various combinatorial conjectures.

Keywords:Iwahori fixed vector, Iwahori Hecke algebra, Bruhat order, intertwining integrals
Categories:20C08, 20F55, 22E50

4. CJM 1998 (vol 50 pp. 193)

Xu, Yuan
Intertwining operator and $h$-harmonics associated with reflection groups
We study the intertwining operator and $h$-harmonics in Dunkl's theory on $h$-harmonics associated with reflection groups. Based on a biorthogonality between the ordinary harmonics and the action of the intertwining operator $V$ on the harmonics, the main result provides a method to compute the action of the intertwining operator $V$ on polynomials and to construct an orthonormal basis for the space of $h$-harmonics.

Keywords:$h$-harmonics, intertwining operator, reflection group
Categories:33C50, 33C45

© Canadian Mathematical Society, 2017 :