CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword inner form

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM Online first

Cohen, Jonathan
Transfer of Representations and Orbital Integrals for Inner Forms of $GL_n$
We characterize the Local Langlands Correspondence (LLC) for inner forms of $\operatorname{GL}_n$ via the Jacquet-Langlands Correspondence (JLC) and compatibility with the Langlands Classification. We show that LLC satisfies a natural compatibility with parabolic induction and characterize LLC for inner forms as a unique family of bijections $\Pi(\operatorname{GL}_r(D)) \to \Phi(\operatorname{GL}_r(D))$ for each $r$, (for a fixed $D$) satisfying certain properties. We construct a surjective map of Bernstein centers $\mathfrak{Z}(\operatorname{GL}_n(F))\to \mathfrak{Z}(\operatorname{GL}_r(D))$ and show this produces pairs of matching distributions in the sense of Haines. Finally, we construct explicit Iwahori-biinvariant matching functions for unit elements in the parahoric Hecke algebras of $\operatorname{GL}_r(D)$, and thereby produce many explicit pairs of matching functions.

Keywords:Langlands correspondence, inner form
Category:20G05

2. CJM 2013 (vol 66 pp. 566)

Choiy, Kwangho
Transfer of Plancherel Measures for Unitary Supercuspidal Representations between $p$-adic Inner Forms
Let $F$ be a $p$-adic field of characteristic $0$, and let $M$ be an $F$-Levi subgroup of a connected reductive $F$-split group such that $\Pi_{i=1}^{r} SL_{n_i} \subseteq M \subseteq \Pi_{i=1}^{r} GL_{n_i}$ for positive integers $r$ and $n_i$. We prove that the Plancherel measure for any unitary supercuspidal representation of $M(F)$ is identically transferred under the local Jacquet-Langlands type correspondence between $M$ and its $F$-inner forms, assuming a working hypothesis that Plancherel measures are invariant on a certain set. This work extends the result of Muić and Savin (2000) for Siegel Levi subgroups of the groups $SO_{4n}$ and $Sp_{4n}$ under the local Jacquet-Langlands correspondence. It can be applied to a simply connected simple $F$-group of type $E_6$ or $E_7$, and a connected reductive $F$-group of type $A_{n}$, $B_{n}$, $C_n$ or $D_n$.

Keywords:Plancherel measure, inner form, local to global global argument, cuspidal automorphic representation, Jacquet-Langlands correspondence
Categories:22E50, 11F70, 22E55, 22E35

© Canadian Mathematical Society, 2017 : https://cms.math.ca/