1. CJM Online first
 CorderoErausquin, Dario

Transport inequalities for logconcave measures, quantitative forms and applications
We review some simple techniques based on monotone mass transport
that allow us to obtain transporttype inequalities for any
logconcave
probability measure, and for more general measures as well. We
discuss quantitative forms of these inequalities, with application
to the BrascampLieb variance inequality.
Keywords:logconcave measures, transport inequality, BrascampLieb inequality, quantitative inequalities Categories:52A40, 60E15, 49Q20 

2. CJM 2015 (vol 67 pp. 1384)
 Graczyk, Piotr; Kemp, Todd; Loeb, JeanJacques

Strong Logarithmic Sobolev Inequalities for LogSubharmonic Functions
We prove an intrinsic equivalence between strong
hypercontractivity and a strong logarithmic Sobolev
inequality for the cone of logarithmically subharmonic
(LSH) functions. We introduce a new large class of measures,
Euclidean regular and exponential type, in addition to all compactlysupported
measures, for which this equivalence holds. We prove a Sobolev
density theorem through LSH functions and use it to prove
the equivalence of strong
hypercontractivity and the strong logarithmic Sobolev
inequality for such logsubharmonic
functions.
Keywords:logarithmic Sobolev inequalities Category:47D06 

3. CJM 2013 (vol 66 pp. 429)
 RiveraNoriega, Jorge

Perturbation and Solvability of Initial $L^p$ Dirichlet Problems for Parabolic Equations over Noncylindrical Domains
For parabolic linear operators $L$ of second order in divergence form,
we prove that the solvability of initial $L^p$ Dirichlet problems for
the whole range $1\lt p\lt \infty$ is preserved under appropriate small
perturbations of the coefficients of the operators involved.
We also prove that if the coefficients of $L$ satisfy a suitable
controlled oscillation in the form of Carleson measure conditions,
then for certain values of $p\gt 1$, the initial $L^p$ Dirichlet problem
associated to $Lu=0$ over noncylindrical domains is solvable.
The results are adequate adaptations of the corresponding results for
elliptic equations.
Keywords:initial $L^p$ Dirichlet problem, second order parabolic equations in divergence form, noncylindrical domains, reverse HÃ¶lder inequalities Category:35K20 

4. CJM 2011 (vol 64 pp. 481)
 Chamorro, Diego

Some Functional Inequalities on Polynomial Volume Growth Lie Groups
In this article we study some Sobolevtype inequalities on polynomial volume growth Lie groups.
We show in particular that improved Sobolev inequalities can be extended to this general framework
without the use of the LittlewoodPaley decomposition.
Keywords:Sobolev inequalities, polynomial volume growth Lie groups Category:22E30 

5. CJM 2007 (vol 59 pp. 276)
 Bernardis, A. L.; MartínReyes, F. J.; Salvador, P. Ortega

Weighted Inequalities for HardySteklov Operators
We characterize the pairs of weights $(v,w)$ for which the
operator $Tf(x)=g(x)\int_{s(x)}^{h(x)}f$ with $s$ and $h$
increasing and continuous functions is of strong type
$(p,q)$ or weak type $(p,q)$ with respect to the pair
$(v,w)$ in the case $0
Keywords:HardySteklov operator, weights, inequalities Categories:26D15, 46E30, 42B25 

6. CJM 2006 (vol 58 pp. 492)
 Chua, SengKee

Extension Theorems on Weighted Sobolev Spaces and Some Applications
We extend the extension theorems to weighted Sobolev spaces
$L^p_{w,k}(\mathcal D)$ on $(\varepsilon,\delta)$ domains with doubling weight $w$
that satisfies a Poincar\'e inequality and such that $w^{1/p}$ is locally
$L^{p'}$. We also make use of the main theorem to improve weighted
Sobolev interpolation inequalities.
Keywords:PoincarÃ© inequalities, $A_p$ weights, doubling weights, $(\ep,\delta)$ domain, $(\ep,\infty)$ domain Category:46E35 

7. CJM 2002 (vol 54 pp. 916)
 Bastien, G.; Rogalski, M.

ConvexitÃ©, complÃ¨te monotonie et inÃ©galitÃ©s sur les fonctions zÃªta et gamma sur les fonctions des opÃ©rateurs de Baskakov et sur des fonctions arithmÃ©tiques
We give optimal upper and lower bounds for the function
$H(x,s)=\sum_{n\geq 1}\frac{1}{(x+n)^s}$ for $x\geq 0$ and $s>1$. These
bounds improve the standard inequalities with integrals. We deduce from them
inequalities about Riemann's $\zeta$ function, and we give a conjecture
about the monotonicity of the function
$s\mapsto[(s1)\zeta(s)]^{\frac{1}{s1}}$. Some applications concern the
convexity of functions related to Euler's $\Gamma$ function and optimal
majorization of elementary functions of Baskakov's operators. Then, the
result proved for the function $x\mapsto x^{s}$ is extended to completely
monotonic functions. This leads to easy evaluation of the order of the
generating series of some arithmetical functions when $z$ tends to 1. The
last part is concerned with the class of non negative decreasing convex
functions on $]0,+\infty[$, integrable at infinity.
Nous prouvons un encadrement optimal pour la quantit\'e
$H(x,s)=\sum_{n\geq 1}\frac{1}{(x+n)^s}$ pour $x\geq 0$ et $s>1$, qui
am\'eliore l'encadrement standard par des int\'egrales. Cet encadrement
entra{\^\i}ne des in\'egalit\'es sur la fonction $\zeta$ de Riemann, et
am\`ene \`a conjecturer la monotonie de la fonction
$s\mapsto[(s1)\zeta(s)]^{\frac{1}{s1}}$. On donne des applications \`a
l'\'etude de la convexit\'e de fonctions li\'ees \`a la fonction $\Gamma$
d'Euler et \`a la majoration optimale des fonctions \'el\'ementaires
intervenant dans les op\'erateurs de Baskakov. Puis, nous \'etendons aux
fonctions compl\`etement monotones sur $]0,+\infty[$ les r\'esultats \'etablis
pour la fonction $x\mapsto x^{s}$, et nous en d\'eduisons des preuves
\'el\'ementaires du comportement, quand $z$ tend vers $1$, des s\'eries
g\'en\'eratrices de certaines fonctions arithm\'etiques. Enfin, nous
prouvons qu'une partie du r\'esultat se g\'en\'eralise \`a une classe de
fonctions convexes positives d\'ecroissantes.
Keywords:arithmetical functions, Baskakov's operators, completely monotonic functions, convex functions, inequalities, gamma function, zeta function Categories:26A51, 26D15 

8. CJM 2000 (vol 52 pp. 920)
 Evans, W. D.; Opic, B.

Real Interpolation with Logarithmic Functors and Reiteration
We present ``reiteration theorems'' with limiting values
$\theta=0$ and $\theta = 1$ for a real interpolation method
involving brokenlogarithmic functors. The resulting spaces
lie outside of the original scale of spaces and to describe them
new interpolation functors are introduced. For an ordered couple
of (quasi) Banach spaces similar results were presented without
proofs by Doktorskii in [D].
Keywords:real interpolation, brokenlogarithmic functors, reiteration, weighted inequalities Categories:46B70, 26D10, 46E30 

9. CJM 1999 (vol 51 pp. 546)
 Felten, M.

Strong Converse Inequalities for Averages in Weighted $L^p$ Spaces on $[1,1]$
Averages in weighted spaces $L^p_\phi[1,1]$ defined by additions
on $[1,1]$ will be shown to satisfy strong converse inequalities
of type A and B with appropriate $K$functionals. Results for
higher levels of smoothness are achieved by combinations of
averages. This yields, in particular, strong converse inequalities
of type D between $K$functionals and suitable difference operators.
Keywords:averages, $K$functionals, weighted spaces, strong converse inequalities Categories:41A25, 41A63 

10. CJM 1997 (vol 49 pp. 1162)
 Ku, HsuTung; Ku, MeiChin; Zhang, XinMin

Isoperimetric inequalities on surfaces of constant curvature
In this paper we introduce the concepts of hyperbolic and elliptic
areas and prove uncountably many new geometric isoperimetric
inequalities on the surfaces of constant curvature.
Keywords:Gaussian curvature, GaussBonnet theorem, polygon, pseudopolygon, pseudoperimeter, hyperbolic surface, Heron's formula, analytic and geometric isoperimetric inequalities Categories:51M10, 51M25, 52A40, 53C20 
