1. CJM 2017 (vol 70 pp. 97)
 Ghaani Farashahi, Arash

A Class of Abstract Linear Representations for Convolution Function Algebras over Homogeneous Spaces of Compact Groups
This paper introduces a class of abstract linear representations
on
Banach convolution function algebras over
homogeneous spaces of compact groups. Let $G$ be a compact group
and $H$ be a closed subgroup of $G$.
Let $\mu$ be the normalized $G$invariant measure over the compact
homogeneous space $G/H$ associated to the
Weil's formula and $1\le p\lt \infty$.
We then present a structured class of abstract linear representations
of the
Banach convolution function algebras $L^p(G/H,\mu)$.
Keywords:homogeneous space, linear representation, continuous unitary representation, convolution function algebra, compact group, convolution, involution Categories:43A85, 47A67, 20G05 

2. CJM 2011 (vol 64 pp. 778)
 Calvaruso, Giovanni; Fino, Anna

Ricci Solitons and Geometry of Fourdimensional Nonreductive Homogeneous Spaces
We study the geometry of nonreductive $4$dimensional homogeneous
spaces. In particular, after describing their LeviCivita connection
and curvature properties, we classify homogeneous Ricci solitons on
these spaces, proving the existence of shrinking, expanding and steady
examples. For all the nontrivial examples we find, the Ricci operator
is diagonalizable.
Keywords:nonreductive homogeneous spaces, pseudoRiemannian metrics, Ricci solitons, Einsteinlike metrics Categories:53C21, 53C50, 53C25 

3. CJM 2010 (vol 62 pp. 1246)
 Chaput, P. E.; Manivel, L.; Perrin, N.

Quantum Cohomology of Minuscule Homogeneous Spaces III. SemiSimplicity and Consequences
We prove that the quantum cohomology ring of any minuscule or
cominuscule homogeneous space, specialized at $q=1$, is semisimple.
This implies that complex conjugation defines an algebra automorphism
of the quantum cohomology ring localized at the quantum
parameter. We check that this involution coincides with the strange
duality defined in our previous article. We deduce VafaIntriligator type
formulas for the GromovWitten invariants.
Keywords:quantum cohomology, minuscule homogeneous spaces, Schubert calculus, quantum Euler class Categories:14M15, 14N35 

4. CJM 2009 (vol 61 pp. 1201)
 Arvanitoyeorgos, Andreas; Dzhepko, V. V.; Nikonorov, Yu. G.

Invariant Einstein Metrics on Some Homogeneous Spaces of Classical Lie Groups
A Riemannian manifold $(M,\rho)$ is called Einstein if the metric
$\rho$ satisfies the condition \linebreak$\Ric (\rho)=c\cdot \rho$ for some
constant $c$. This paper is devoted to the investigation of
$G$invariant Einstein metrics, with additional symmetries,
on some homogeneous spaces $G/H$ of classical groups.
As a consequence, we obtain new invariant Einstein metrics on some
Stiefel manifolds $\SO(n)/\SO(l)$.
Furthermore, we show that for any positive integer $p$ there exists a
Stiefel manifold $\SO(n)/\SO(l)$
that admits at least $p$
$\SO(n)$invariant Einstein metrics.
Keywords:Riemannian manifolds, homogeneous spaces, Einstein metrics, Stiefel manifolds Categories:53C25, 53C30 

5. CJM 2009 (vol 61 pp. 708)
 Zelenyuk, Yevhen

Regular Homeomorphisms of Finite Order on Countable Spaces
We present a structure theorem for a broad class of homeomorphisms of
finite order on countable zero dimensional spaces. As applications we
show the following.
\begin{compactenum}[\rm(a)]
\item Every countable nondiscrete topological group not containing an
open Boolean subgroup can be partitioned into infinitely many dense
subsets.
\item If $G$ is a countably infinite Abelian group with finitely many
elements of order $2$ and $\beta G$ is the Stone\v Cech
compactification of $G$ as a discrete semigroup, then for every
idempotent $p\in\beta G\setminus\{0\}$, the subset
$\{p,p\}\subset\beta G$ generates algebraically the free product of
oneelement semigroups $\{p\}$ and~$\{p\}$.
\end{compactenum}
Keywords:Homeomorphism, homogeneous space, topological group, resolvability, Stone\v Cech compactification Categories:22A30, 54H11, 20M15, 54A05 
