location:  Publications → journals
Search results

Search: All articles in the CJM digital archive with keyword hermitian matrix

 Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2008 (vol 60 pp. 1050)

Huang, Wen-ling; Semrl, Peter \v
 Adjacency Preserving Maps on Hermitian Matrices Hua's fundamental theorem of the geometry of hermitian matrices characterizes bijective maps on the space of all $n\times n$ hermitian matrices preserving adjacency in both directions. The problem of possible improvements has been open for a while. There are three natural problems here. Do we need the bijectivity assumption? Can we replace the assumption of preserving adjacency in both directions by the weaker assumption of preserving adjacency in one direction only? Can we obtain such a characterization for maps acting between the spaces of hermitian matrices of different sizes? We answer all three questions for the complex hermitian matrices, thus obtaining the optimal structural result for adjacency preserving maps on hermitian matrices over the complex field. Keywords:rank, adjacency preserving map, hermitian matrix, geometry of matricesCategories:15A03, 15A04, 15A57, 15A99

2. CJM 2003 (vol 55 pp. 91)

Choi, Man-Duen; Li, Chi-Kwong; Poon, Yiu-Tung
 Some Convexity Features Associated with Unitary Orbits Let $\mathcal{H}_n$ be the real linear space of $n\times n$ complex Hermitian matrices. The unitary (similarity) orbit $\mathcal{U} (C)$ of $C \in \mathcal{H}_n$ is the collection of all matrices unitarily similar to $C$. We characterize those $C \in \mathcal{H}_n$ such that every matrix in the convex hull of $\mathcal{U}(C)$ can be written as the average of two matrices in $\mathcal{U}(C)$. The result is used to study spectral properties of submatrices of matrices in $\mathcal{U}(C)$, the convexity of images of $\mathcal{U} (C)$ under linear transformations, and some related questions concerning the joint $C$-numerical range of Hermitian matrices. Analogous results on real symmetric matrices are also discussed. Keywords:Hermitian matrix, unitary orbit, eigenvalue, joint numerical rangeCategories:15A60, 15A42
 top of page | contact us | privacy | site map |