Canadian Mathematical Society www.cms.math.ca
 location:  Publications → journals
Search results

Search: All articles in the CJM digital archive with keyword discriminant

 Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2010 (vol 62 pp. 787)

Landquist, E.; Rozenhart, P.; Scheidler, R.; Webster, J.; Wu, Q.
 An Explicit Treatment of Cubic Function Fields with Applications We give an explicit treatment of cubic function fields of characteristic at least five. This includes an efficient technique for converting such a field into standard form, formulae for the field discriminant and the genus, simple necessary and sufficient criteria for non-singularity of the defining curve, and a characterization of all triangular integral bases. Our main result is a description of the signature of any rational place in a cubic extension that involves only the defining curve and the order of the base field. All these quantities only require simple polynomial arithmetic as well as a few square-free polynomial factorizations and, in some cases, square and cube root extraction modulo an irreducible polynomial. We also illustrate why and how signature computation plays an important role in computing the class number of the function field. This in turn has applications to the study of zeros of zeta functions of function fields. Keywords:cubic function field, discriminant, non-singularity, integral basis, genus, signature of a place, class numberCategories:14H05, 11R58, 14H45, 11G20, 11G30, 11R16, 11R29

2. CJM 2009 (vol 61 pp. 264)

Bell, J. P.; Hare, K. G.
 On $\BbZ$-Modules of Algebraic Integers Let $q$ be an algebraic integer of degree $d \geq 2$. Consider the rank of the multiplicative subgroup of $\BbC^*$ generated by the conjugates of $q$. We say $q$ is of {\em full rank} if either the rank is $d-1$ and $q$ has norm $\pm 1$, or the rank is $d$. In this paper we study some properties of $\BbZ[q]$ where $q$ is an algebraic integer of full rank. The special cases of when $q$ is a Pisot number and when $q$ is a Pisot-cyclotomic number are also studied. There are four main results. \begin{compactenum}[\rm(1)] \item If $q$ is an algebraic integer of full rank and $n$ is a fixed positive integer, then there are only finitely many $m$ such that $\disc\left(\BbZ[q^m]\right)=\disc\left(\BbZ[q^n]\right)$. \item If $q$ and $r$ are algebraic integers of degree $d$ of full rank and $\BbZ[q^n] = \BbZ[r^n]$ for infinitely many $n$, then either $q = \omega r'$ or $q={\rm Norm}(r)^{2/d}\omega/r'$, where $r'$ is some conjugate of $r$ and $\omega$ is some root of unity. \item Let $r$ be an algebraic integer of degree at most $3$. Then there are at most $40$ Pisot numbers $q$ such that $\BbZ[q] = \BbZ[r]$. \item There are only finitely many Pisot-cyclotomic numbers of any fixed order. \end{compactenum} Keywords:algebraic integers, Pisot numbers, full rank, discriminantCategories:11R04, 11R06
 top of page | contact us | privacy | site map |

© Canadian Mathematical Society, 2017 : https://cms.math.ca/