1. CJM Online first
 Pasnicu, Cornel; Phillips, N. Christopher

The weak ideal property and topological dimension zero
Following up on previous work,
we prove a number of results for C*algebras
with the weak ideal property
or topological dimension zero,
and some results for C*algebras with related properties.
Some of the more important results include:
$\bullet$
The weak ideal property
implies topological dimension zero.
$\bullet$
For a separable C*algebra~$A$,
topological dimension zero is equivalent to
${\operatorname{RR}} ({\mathcal{O}}_2 \otimes A) = 0$,
to $D \otimes A$ having the ideal property
for some (or any) Kirchberg algebra~$D$,
and to $A$ being residually hereditarily in
the class of all C*algebras $B$ such that
${\mathcal{O}}_{\infty} \otimes B$
contains a nonzero projection.
$\bullet$
Extending the known result for ${\mathbb{Z}}_2$,
the classes of C*algebras
with residual (SP),
which are residually hereditarily (properly) infinite,
or which are purely infinite and have the ideal property,
are closed under crossed products by arbitrary actions
of abelian $2$groups.
$\bullet$
If $A$ and $B$ are separable,
one of them is exact,
$A$ has the ideal property,
and $B$ has the weak ideal property,
then $A \otimes_{\mathrm{min}} B$ has the weak ideal property.
$\bullet$
If $X$ is a totally disconnected locally compact Hausdorff space
and $A$ is a $C_0 (X)$algebra
all of whose fibers have one of the weak ideal property,
topological dimension zero,
residual (SP),
or the combination of pure infiniteness and the ideal property,
then $A$ also has the corresponding property
(for topological dimension zero, provided $A$ is separable).
$\bullet$
Topological dimension zero,
the weak ideal property,
and the ideal property
are all equivalent
for a substantial class of separable C*algebras including
all separable locally AH~algebras.
$\bullet$
The weak ideal property does not imply the ideal property
for separable $Z$stable C*algebras.
We give other related results,
as well as counterexamples to several other statements
one might hope for.
Keywords:ideal property, weak ideal property, topological dimension zero, $C_0 (X)$algebra, purely infinite C*algebra Category:46L05 

2. CJM 2015 (vol 68 pp. 258)
 Calixto, Lucas; Moura, Adriano; Savage, Alistair

Equivariant Map Queer Lie Superalgebras
An equivariant map queer Lie superalgebra is the Lie superalgebra
of regular maps from an algebraic variety (or scheme) $X$ to
a queer Lie superalgebra $\mathfrak{q}$ that are equivariant with respect
to the action of a finite group $\Gamma$ acting on $X$ and $\mathfrak{q}$.
In this paper, we classify all irreducible finitedimensional
representations of the equivariant map queer Lie superalgebras
under the assumption that $\Gamma$ is abelian and acts freely
on $X$. We show that such representations are parameterized
by a certain set of $\Gamma$equivariant finitely supported maps
from $X$ to the set of isomorphism classes of irreducible finitedimensional
representations of $\mathfrak{q}$. In the special case where $X$ is the
torus, we obtain a classification of the irreducible finitedimensional
representations of the twisted loop queer superalgebra.
Keywords:Lie superalgebra, queer Lie superalgebra, loop superalgebra, equivariant map superalgebra, finitedimensional representation, finitedimensional module Categories:17B65, 17B10 

3. CJM 2015 (vol 67 pp. 990)
 Amini, Massoud; Elliott, George A.; Golestani, Nasser

The Category of Bratteli Diagrams
A category structure for Bratteli diagrams is proposed and a
functor from
the category of AF algebras to the category of Bratteli diagrams
is
constructed. Since isomorphism of Bratteli diagrams in this
category coincides
with Bratteli's notion of equivalence, we obtain in particular
a functorial formulation of Bratteli's
classification of AF algebras (and at the same time, of Glimm's
classification of UHF~algebras).
It is shown that the three approaches
to classification of AF~algebras, namely, through Bratteli diagrams,
Ktheory, and
abstract classifying categories, are essentially the same
from a categorical point of view.
Keywords:C$^{*}$algebra, category, functor, AF algebra, dimension group, Bratteli diagram Categories:46L05, 46L35, 46M15 

4. CJM 2013 (vol 65 pp. 1384)
 Wright, Paul

Estimates of Hausdorff Dimension for Nonwandering Sets of Higher Dimensional Open Billiards
This article concerns a class of open billiards consisting of a finite
number of strictly convex, noneclipsing obstacles $K$. The
nonwandering set $M_0$ of the billiard ball map is a topological
Cantor set and its Hausdorff dimension has been previously estimated
for billiards in $\mathbb{R}^2$, using wellknown techniques. We
extend these estimates to billiards in $\mathbb{R}^n$, and make
various refinements to the estimates. These refinements also allow
improvements to other results. We also show that in many cases, the
nonwandering set is confined to a particular subset of $\mathbb{R}^n$
formed by the convex hull of points determined by period 2
orbits. This allows more accurate bounds on the constants used in
estimating Hausdorff dimension.
Keywords:dynamical systems, billiards, dimension, Hausdorff Categories:37D20, 37D40 

5. CJM 2013 (vol 66 pp. 625)
 Giambruno, Antonio; Mattina, Daniela La; Zaicev, Mikhail

Classifying the Minimal Varieties of Polynomial Growth
Let $\mathcal{V}$ be a variety of associative algebras generated by
an algebra with $1$ over a field of characteristic zero. This
paper is devoted to the classification of the varieties
$\mathcal{V}$ which are minimal of polynomial growth (i.e., their
sequence of codimensions growth like $n^k$ but any proper subvariety
grows like $n^t$ with $t\lt k$). These varieties are the building
blocks of general varieties of polynomial growth.
It turns out that for $k\le 4$ there are only a finite number of
varieties of polynomial growth $n^k$, but for each $k \gt 4$, the
number of minimal varieties is at least $F$, the cardinality of
the base field and we give a recipe of how to construct them.
Keywords:Tideal, polynomial identity, codimension, polynomial growth, Categories:16R10, 16P90 

6. CJM 2013 (vol 66 pp. 303)
 Elekes, Márton; Steprāns, Juris

Haar Null Sets and the Consistent Reflection of Nonmeagreness
A subset $X$ of a Polish group $G$ is called Haar null if there exists
a Borel set $B \supset X$ and Borel probability measure $\mu$ on $G$ such that
$\mu(gBh)=0$ for every $g,h \in G$.
We prove that there exist a set $X \subset \mathbb R$ that is not Lebesgue null and a
Borel probability measure $\mu$ such that $\mu(X + t) = 0$ for every $t \in
\mathbb R$.
This answers a question from David Fremlin's problem list by showing
that one cannot simplify the definition of a Haar null set by leaving out the
Borel set $B$. (The answer was already known assuming the Continuum
Hypothesis.)
This result motivates the following Baire category analogue. It is consistent
with $ZFC$ that there exist an abelian Polish group $G$ and a Cantor
set $C \subset G$ such that for every nonmeagre set $X \subset G$ there exists a $t
\in G$ such that $C \cap (X + t)$ is relatively nonmeagre in $C$. This
essentially generalises results of BartoszyÅski and BurkeMiller.
Keywords:Haar null, Christensen, nonlocally compact Polish group, packing dimension, Problem FC on Fremlin's list, forcing, generic real Categories:28C10, 03E35, 03E17, , , , , 22C05, 28A78 

7. CJM 2012 (vol 65 pp. 721)
 Adamus, Janusz; Randriambololona, Serge; Shafikov, Rasul

Tameness of Complex Dimension in a Real Analytic Set
Given a real analytic set $X$ in a complex manifold and a positive
integer $d$, denote by $\mathcal A^d$ the set of points $p$ in $X$ at which
there exists a germ of a complex analytic set of dimension $d$ contained in $X$.
It is proved that $\mathcal A^d$ is a closed semianalytic subset of $X$.
Keywords:complex dimension, finite type, semianalytic set, tameness Categories:32B10, 32B20, 32C07, 32C25, 32V15, 32V40, 14P15 

8. CJM 2011 (vol 64 pp. 755)
 Brown, Lawrence G.; Lee, Hyun Ho

Homotopy Classification of Projections in the Corona Algebra of a Nonsimple $C^*$algebra
We study projections in the corona algebra of $C(X)\otimes K$, where K
is the $C^*$algebra of compact operators on a separable infinite
dimensional Hilbert space and $X=[0,1],[0,\infty),(\infty,\infty)$,
or $[0,1]/\{ 0,1 \}$. Using BDF's essential codimension, we determine
conditions for a projection in the corona algebra to be liftable to a
projection in the multiplier algebra. We also determine the
conditions for two projections to be equal in $K_0$, Murrayvon
Neumann equivalent, unitarily equivalent, or homotopic. In light of
these characterizations, we construct examples showing that the
equivalence notions above are all distinct.
Keywords:essential codimension, continuous field of Hilbert spaces, Corona algebra Categories:46L05, 46L80 

9. CJM 2011 (vol 64 pp. 573)
 Nawata, Norio

Fundamental Group of Simple $C^*$algebras with Unique Trace III
We introduce the fundamental group ${\mathcal F}(A)$ of
a simple $\sigma$unital $C^*$algebra $A$ with unique (up to scalar multiple)
densely defined lower semicontinuous trace.
This is a generalization of ``Fundamental Group of Simple
$C^*$algebras with Unique Trace I and II'' by Nawata and Watatani.
Our definition in this paper makes sense for stably projectionless $C^*$algebras.
We show that there exist separable stably projectionless $C^*$algebras such that
their fundamental groups are equal to $\mathbb{R}_+^\times$
by using the classification theorem of Razak and Tsang.
This is a contrast to the unital case in Nawata and Watatani.
This study is motivated by the work of Kishimoto and Kumjian.
Keywords:fundamental group, Picard group, Hilbert module, countable basis, stably projectionless algebra, dimension function Categories:46L05, 46L08, 46L35 

10. CJM 2011 (vol 63 pp. 616)
 Lee, Edward

A Modular Quintic CalabiYau Threefold of Level 55
In this note we search the parameter space of HorrocksMumford quintic
threefolds and locate a CalabiYau threefold that is modular, in the
sense that the $L$function of its middledimensional cohomology is
associated with a classical modular form of weight 4 and level 55.
Keywords: CalabiYau threefold, nonrigid CalabiYau threefold, twodimensional Galois representation, modular variety, HorrocksMumford vector bundle Categories:14J15, 11F23, 14J32, 11G40 

11. CJM 2011 (vol 63 pp. 551)
 Hadwin, Don; Li, Qihui; Shen, Junhao

Topological Free Entropy Dimensions in Nuclear C$^*$algebras and in Full Free Products of Unital C$^*$algebras
In the paper, we introduce a new concept,
topological orbit dimension of an $n$tuple of elements in a unital
C$^{\ast}$algebra. Using this concept, we conclude that Voiculescu's
topological free
entropy dimension of every finite family of selfadjoint generators of a
nuclear C$^{\ast}$algebra is less than or equal to $1$. We also show that the
Voiculescu's topological free entropy dimension is additive in the full free
product of some unital C$^{\ast}$algebras. We show that the unital full free
product of Blackadar and Kirchberg's unital MF
algebras is also an MF algebra. As an application, we obtain that
$\mathop{\textrm{Ext}}(C_{r}^{\ast}(F_{2})\ast_{\mathbb{C}}C_{r}^{\ast}(F_{2}))$ is not a group.
Keywords: topological free entropy dimension, unital C$^{*}$algebra Categories:46L10, 46L54 

12. CJM 2011 (vol 63 pp. 648)
 Ngai, SzeMan

Spectral Asymptotics of Laplacians Associated with Onedimensional Iterated Function Systems with Overlaps
We set up a framework for computing the spectral dimension of a class of onedimensional
selfsimilar measures that are defined by iterated function systems
with overlaps and satisfy a family of secondorder selfsimilar
identities. As applications of our result we obtain the spectral dimension
of important measures such as the infinite Bernoulli convolution
associated with the golden ratio and convolutions of Cantortype measures.
The main novelty of our result is that the iterated function systems
we consider are not postcritically finite and do not satisfy the
wellknown open set condition.
Keywords:spectral dimension, fractal, Laplacian, selfsimilar measure, iterated function system with overlaps, secondorder selfsimilar identities Categories:28A80, , , , 35P20, 35J05, 43A05, 47A75 

13. CJM 2011 (vol 63 pp. 481)
 Baragar, Arthur

The Ample Cone for a K3 Surface
In this paper, we give several pictorial fractal
representations of the ample or KÃ¤hler cone for surfaces in a
certain class of $K3$ surfaces. The class includes surfaces
described by smooth $(2,2,2)$ forms in ${\mathbb P^1\times\mathbb P^1\times \mathbb P^1}$ defined over a
sufficiently large number field $K$ that have a line parallel to
one of the axes and have Picard number four. We relate the
Hausdorff dimension of this fractal to the asymptotic growth of
orbits of curves under the action of the surface's group of
automorphisms. We experimentally estimate the Hausdorff dimension
of the fractal to be $1.296 \pm .010$.
Keywords:Fractal, Hausdorff dimension, K3 surface, Kleinian groups, dynamics Categories:14J28, , , , 14J50, 11D41, 11D72, 11H56, 11G10, 37F35, 37D05 

14. CJM 2010 (vol 63 pp. 436)
 Mine, Kotaro; Sakai, Katsuro

Simplicial Complexes and Open Subsets of NonSeparable LFSpaces
Let $F$ be a nonseparable LFspace homeomorphic to
the direct sum $\sum_{n\in\mathbb{N}} \ell_2(\tau_n)$,
where $\aleph_0 < \tau_1 < \tau_2 < \cdots$.
It is proved that
every open subset $U$ of $F$ is homeomorphic to the product $K \times F$
for some locally finitedimensional simplicial complex $K$ such that
every vertex $v \in K^{(0)}$ has the star $\operatorname{St}(v,K)$
with $\operatorname{card} \operatorname{St}(v,K)^{(0)} < \tau = \sup\tau_n$
(and $\operatorname{card} K^{(0)} \le \tau$),
and, conversely, if $K$ is such a simplicial complex,
then the product $K \times F$ can be embedded in $F$ as an open set,
where $K$ is the polyhedron of $K$ with the metric topology.
Keywords:LFspace, open set, simplicial complex, metric topology, locally finitedimensional, star, small box product, ANR, $\ell_2(\tau)$, $\ell_2(\tau)$manifold, open embedding, $\sum_{i\in\mathbb{N}}\ell_2(\tau_i)$ Categories:57N20, 46A13, 46T05, 57N17, 57Q05, 57Q40 

15. CJM 2010 (vol 62 pp. 1182)
 Yue, Hong

A Fractal Function Related to the JohnNirenberg Inequality for $Q_{\alpha}({\mathbb R^n})$
A borderline case function $f$ for $ Q_{\alpha}({\mathbb R^n})$ spaces
is defined as a Haar wavelet decomposition, with the coefficients
depending on a fixed parameter $\beta>0$. On its support $I_0=[0,
1]^n$, $f(x)$ can be expressed by the binary expansions of the
coordinates of $x$. In particular, $f=f_{\beta}\in Q_{\alpha}({\mathbb
R^n})$ if and only if $\alpha<\beta<\frac{n}{2}$, while for
$\beta=\alpha$, it was shown by Yue and Dafni that $f$ satisfies a
JohnNirenberg inequality for $ Q_{\alpha}({\mathbb R^n})$. When
$\beta\neq 1$, $f$ is a selfaffine function. It is continuous almost
everywhere and discontinuous at all dyadic points inside $I_0$. In
addition, it is not monotone along any coordinate direction in any
small cube. When the parameter $\beta\in (0, 1)$, $f$ is onto from
$I_0$ to $[\frac{1}{12^{\beta}}, \frac{1}{12^{\beta}}]$, and the
graph of $f$ has a noninteger fractal dimension $n+1\beta$.
Keywords:Haar wavelets, Q spaces, JohnNirenberg inequality, Greedy expansion, selfaffine, fractal, Box dimension Categories:42B35, 42C10, 30D50, 28A80 

16. CJM 2009 (vol 61 pp. 124)
 Dijkstra, Jan J.; Mill, Jan van

Characterizing Complete Erd\H os Space
The space now known as {\em complete Erd\H os
space\/} $\cerdos$ was introduced by Paul Erd\H os in 1940 as the
closed subspace of the Hilbert space $\ell^2$ consisting of all
vectors such that every coordinate is in the convergent sequence
$\{0\}\cup\{1/n:n\in\N\}$. In a solution to a problem posed by Lex G.
Oversteegen we present simple and useful topological
characterizations of $\cerdos$.
As an application we determine the class
of factors of $\cerdos$. In another application we determine
precisely which of the spaces that can be constructed in the Banach
spaces $\ell^p$ according to the `Erd\H os method' are homeomorphic
to $\cerdos$. A novel application states that if $I$ is a
Polishable $F_\sigma$ideal on $\omega$, then $I$ with the Polish
topology is homeomorphic to either $\Z$, the Cantor set $2^\omega$,
$\Z\times2^\omega$, or $\cerdos$. This last result answers a
question that was asked
by Stevo Todor{\v{c}}evi{\'c}.
Keywords:Complete Erd\H os space, Lelek fan, almost zerodimensional, nowhere zerodimensional, Polishable ideals, submeasures on $\omega$, $\R$trees, linefree groups in Banach spaces Categories:28C10, 46B20, 54F65 

17. CJM 2009 (vol 61 pp. 76)
 Christensen, Lars Winther; Holm, Henrik

Ascent Properties of Auslander Categories
Let $R$ be a homomorphic image of a Gorenstein local ring. Recent
work has shown that there is a bridge between Auslander categories
and modules of finite Gorenstein homological dimensions over $R$.
We use Gorenstein dimensions to prove new results about Auslander
categories and vice versa. For example, we establish base change
relations between the Auslander categories of the source and target
rings of a homomorphism $\varphi \colon R \to S$ of finite flat dimension.
Keywords:Auslander categories, Gorenstein dimensions, ascent properties, AuslanderBuchsbaum formulas Categories:13D05, 13D07, 13D25 

18. CJM 2008 (vol 60 pp. 658)
 Mihailescu, Eugen; Urba\'nski, Mariusz

Inverse Pressure Estimates and the Independence of Stable Dimension for NonInvertible Maps
We study the case of an Axiom A holomorphic nondegenerate
(hence noninvertible) map $f\from\mathbb P^2
\mathbb C \to \mathbb P^2 \mathbb C$, where $\mathbb P^2 \mathbb C$
stands for the complex
projective space of dimension 2. Let $\Lambda$ denote a basic set for
$f$ of unstable index 1, and $x$ an arbitrary point of $\Lambda$; we
denote by $\delta^s(x)$ the Hausdorff dimension of $W^s_r(x) \cap
\Lambda$, where $r$ is some fixed positive number and $W^s_r(x)$ is
the local stable manifold at $x$ of size $r$; $\delta^s(x)$ is called
\emph{the stable dimension at} $x$. Mihailescu and
Urba\'nski introduced a notion of inverse topological pressure,
denoted by $P^$, which takes into consideration preimages of points.
Manning and McCluskey study the case of hyperbolic diffeomorphisms on
real surfaces and give formulas for Hausdorff dimension. Our
noninvertible situation is different here since the local unstable
manifolds are not uniquely determined by their base point, instead
they depend in general on whole prehistories of the base points. Hence
our methods are different and are based on using a sequence of inverse
pressures for the iterates of $f$, in order to give upper and lower
estimates of the stable dimension. We obtain an estimate of the
oscillation of the stable dimension on $\Lambda$. When each point $x$
from $\Lambda$ has the same number $d'$ of preimages in $\Lambda$,
then we show that $\delta^s(x)$ is independent
of $x$; in fact $\delta^s(x)$ is shown to be equal in this case with
the unique zero of the map $t \to P(t\phi^s  \log d')$. We also
prove the Lipschitz continuity of the stable vector spaces over
$\Lambda$; this proof is again different than the one for
diffeomorphisms (however, the unstable distribution is not always
Lipschitz for conformal noninvertible maps). In the end we include
the corresponding results for a real conformal setting.
Keywords:Hausdorff dimension, stable manifolds, basic sets, inverse topological pressure Categories:37D20, 37A35, 37F35 

19. CJM 2007 (vol 59 pp. 332)
 Leuschke, Graham J.

Endomorphism Rings of Finite Global Dimension
For a commutative local ring $R$, consider (noncommutative)
$R$algebras $\Lambda$ of the form $\Lambda = \operatorname{End}_R(M)$
where $M$ is a reflexive $R$module with nonzero free direct summand.
Such algebras $\Lambda$ of finite global dimension can be viewed as
potential substitutes for, or analogues of, a resolution of
singularities of $\operatorname{Spec} R$. For example, Van den Bergh
has shown that a threedimensional Gorenstein normal
$\mathbb{C}$algebra with isolated terminal singularities has a
crepant resolution of singularities if and only if it has such an
algebra $\Lambda$ with finite global dimension and which is maximal
CohenMacaulay over $R$ (a ``noncommutative crepant resolution of
singularities''). We produce algebras
$\Lambda=\operatorname{End}_R(M)$ having finite global dimension in
two contexts: when $R$ is a reduced onedimensional complete local
ring, or when $R$ is a CohenMacaulay local ring of finite
CohenMacaulay type. If in the latter case $R$ is Gorenstein, then
the construction gives a noncommutative crepant resolution of
singularities in the sense of Van den Bergh.
Keywords:representation dimension, noncommutative crepant resolution, maximal CohenMacaulay modules Categories:16G50, 16G60, 16E99 

20. CJM 2006 (vol 58 pp. 449)
 Agarwal, Ravi P.; Cao, Daomin; Lü, Haishen; O'Regan, Donal

Existence and Multiplicity of Positive Solutions for Singular Semipositone $p$Laplacian Equations
Positive solutions are obtained for the boundary value problem
\[\begin{cases}
(  u' ^{p2}u')'
=\lambda f( t,u),\;t\in ( 0,1) ,p>1\\
u( 0) =u(1) =0.
\end{cases}
\]
Here $f(t,u) \geq M,$ ($M$ is a positive constant)
for $(t,u) \in [0\mathinner{,}1] \times (0,\infty )$.
We will show the existence of two positive
solutions by using degree theory together with the upperlower
solution method.
Keywords:one dimensional $p$Laplacian, positive solution, degree theory, upper and lower solution Category:34B15 

21. CJM 2002 (vol 54 pp. 1280)
 Skrzypczak, Leszek

Besov Spaces and Hausdorff Dimension For Some CarnotCarathÃ©odory Metric Spaces
We regard a system of left invariant vector fields $\mathcal{X}=\{X_1,\dots,X_k\}$
satisfying the H\"ormander condition and the related CarnotCarath\'eodory metric on a
unimodular Lie group $G$. We define Besov spaces corresponding to the subLaplacian
$\Delta=\sum X_i^2$ both with positive and negative smoothness. The atomic
decomposition of the spaces is given. In consequence we get the distributional
characterization of the Hausdorff dimension of Borel subsets with the Haar measure
zero.
Keywords:Besov spaces, subelliptic operators, CarnotCarathÃ©odory metric, Hausdorff dimension Categories:46E35, 43A15, 28A78 

22. CJM 1999 (vol 51 pp. 673)
 Barlow, Martin T.; Bass, Richard F.

Brownian Motion and Harmonic Analysis on Sierpinski Carpets
We consider a class of fractal subsets of $\R^d$ formed in a manner
analogous to the construction of the Sierpinski carpet. We prove a
uniform Harnack inequality for positive harmonic functions; study
the heat equation, and obtain upper and lower bounds on the heat
kernel which are, up to constants, the best possible; construct a
locally isotropic diffusion $X$ and determine its basic properties;
and extend some classical Sobolev and Poincar\'e inequalities to
this setting.
Keywords:Sierpinski carpet, fractal, Hausdorff dimension, spectral dimension, Brownian motion, heat equation, harmonic functions, potentials, reflecting Brownian motion, coupling, Harnack inequality, transition densities, fundamental solutions Categories:60J60, 60B05, 60J35 

23. CJM 1997 (vol 49 pp. 675)
 de Cataldo, Mark Andrea A.

Some adjunctiontheoretic properties of codimension two nonsingular subvarities of quadrics
We make precise the structure of the first two reduction morphisms
associated with codimension two nonsingular subvarieties
of nonsingular quadrics $\Q^n$, $n\geq 5$.
We give a coarse classification of the same class of subvarieties
when they are assumed not to be of loggeneraltype.}
Keywords:Adjunction Theory, classification, codimension two, conic bundles,, low codimension, non loggeneraltype, quadric, reduction, special, variety. Categories:14C05, 14E05, 14E25, 14E30, 14E35, 14J10 
