Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword correspondence

  Expand all        Collapse all Results 1 - 9 of 9

1. CJM Online first

Cohen, Jonathan
Transfer of Representations and Orbital Integrals for Inner Forms of $GL_n$
We characterize the Local Langlands Correspondence (LLC) for inner forms of $\operatorname{GL}_n$ via the Jacquet-Langlands Correspondence (JLC) and compatibility with the Langlands Classification. We show that LLC satisfies a natural compatibility with parabolic induction and characterize LLC for inner forms as a unique family of bijections $\Pi(\operatorname{GL}_r(D)) \to \Phi(\operatorname{GL}_r(D))$ for each $r$, (for a fixed $D$) satisfying certain properties. We construct a surjective map of Bernstein centers $\mathfrak{Z}(\operatorname{GL}_n(F))\to \mathfrak{Z}(\operatorname{GL}_r(D))$ and show this produces pairs of matching distributions in the sense of Haines. Finally, we construct explicit Iwahori-biinvariant matching functions for unit elements in the parahoric Hecke algebras of $\operatorname{GL}_r(D)$, and thereby produce many explicit pairs of matching functions.

Keywords:Langlands correspondence, inner form

2. CJM 2016 (vol 69 pp. 186)

Pan, Shu-Yen
$L$-Functoriality for Local Theta Correspondence of Supercuspidal Representations with Unipotent Reduction
The preservation principle of local theta correspondences of reductive dual pairs over a $p$-adic field predicts the existence of a sequence of irreducible supercuspidal representations of classical groups. Adams/Harris-Kudla-Sweet have a conjecture about the Langlands parameters for the sequence of supercuspidal representations. In this paper we prove modified versions of their conjectures for the case of supercuspidal representations with unipotent reduction.

Keywords:local theta correspondence, supercuspidal representation, preservation principle, Langlands functoriality
Categories:22E50, 11F27, 20C33

3. CJM 2016 (vol 68 pp. 961)

Greenberg, Matthew; Seveso, Marco
$p$-adic Families of Cohomological Modular Forms for Indefinite Quaternion Algebras and the Jacquet-Langlands Correspondence
We use the method of Ash and Stevens to prove the existence of small slope $p$-adic families of cohomological modular forms for an indefinite quaternion algebra $B$. We prove that the Jacquet-Langlands correspondence relating modular forms on $\textbf{GL}_2/\mathbb{Q}$ and cohomomological modular forms for $B$ is compatible with the formation of $p$-adic families. This result is an analogue of a theorem of Chenevier concerning definite quaternion algebras.

Keywords:modular forms, p-adic families, Jacquet-Langlands correspondence, Shimura curves, eigencurves
Categories:11F11, 11F67, 11F85

4. CJM 2013 (vol 66 pp. 566)

Choiy, Kwangho
Transfer of Plancherel Measures for Unitary Supercuspidal Representations between $p$-adic Inner Forms
Let $F$ be a $p$-adic field of characteristic $0$, and let $M$ be an $F$-Levi subgroup of a connected reductive $F$-split group such that $\Pi_{i=1}^{r} SL_{n_i} \subseteq M \subseteq \Pi_{i=1}^{r} GL_{n_i}$ for positive integers $r$ and $n_i$. We prove that the Plancherel measure for any unitary supercuspidal representation of $M(F)$ is identically transferred under the local Jacquet-Langlands type correspondence between $M$ and its $F$-inner forms, assuming a working hypothesis that Plancherel measures are invariant on a certain set. This work extends the result of Muić and Savin (2000) for Siegel Levi subgroups of the groups $SO_{4n}$ and $Sp_{4n}$ under the local Jacquet-Langlands correspondence. It can be applied to a simply connected simple $F$-group of type $E_6$ or $E_7$, and a connected reductive $F$-group of type $A_{n}$, $B_{n}$, $C_n$ or $D_n$.

Keywords:Plancherel measure, inner form, local to global global argument, cuspidal automorphic representation, Jacquet-Langlands correspondence
Categories:22E50, 11F70, 22E55, 22E35

5. CJM 2011 (vol 64 pp. 1090)

Rosso, Daniele
Classic and Mirabolic Robinson-Schensted-Knuth Correspondence for Partial Flags
In this paper we first generalize to the case of partial flags a result proved both by Spaltenstein and by Steinberg that relates the relative position of two complete flags and the irreducible components of the flag variety in which they lie, using the Robinson-Schensted-Knuth correspondence. Then we use this result to generalize the mirabolic Robinson-Schensted-Knuth correspondence defined by Travkin, to the case of two partial flags and a line.

Keywords:partial flag varieties, RSK correspondence
Categories:14M15, 05A05

6. CJM 2009 (vol 62 pp. 94)

Kuo, Wentang
The Langlands Correspondence on the Generic Irreducible Constituents of Principal Series
Let $G$ be a connected semisimple split group over a $p$-adic field. We establish the explicit link between principal nilpotent orbits and the irreducible constituents of principal series in terms of $L$-group objects.

Keywords:Langlands correspondence, nilpotent orbits, principal series
Categories:22E50, 22E35

7. CJM 2004 (vol 56 pp. 495)

Gomi, Yasushi; Nakamura, Iku; Shinoda, Ken-ichi
Coinvariant Algebras of Finite Subgroups of $\SL(3,C)$
For most of the finite subgroups of $\SL(3,\mathbf{C})$, we give explicit formulae for the Molien series of the coinvariant algebras, generalizing McKay's formulae \cite{M99} for subgroups of $\SU(2)$. We also study the $G$-orbit Hilbert scheme $\Hilb^G(\mathbf{C}^3)$ for any finite subgroup $G$ of $\SO(3)$, which is known to be a minimal (crepant) resolution of the orbit space $\mathbf{C}^3/G$. In this case the fiber over the origin of the Hilbert-Chow morphism from $\Hilb^G(\mathbf{C}^3)$ to $\mathbf{C}^3/G$ consists of finitely many smooth rational curves, whose planar dual graph is identified with a certain subgraph of the representation graph of $G$. This is an $\SO(3)$ version of the McKay correspondence in the $\SU(2)$ case.

Keywords:Hilbert scheme, Invariant theory, Coinvariant algebra,, McKay quiver, McKay correspondence
Categories:14J30, 14J17

8. CJM 2000 (vol 52 pp. 695)

Carey, A.; Farber, M.; Mathai, V.
Correspondences, von Neumann Algebras and Holomorphic $L^2$ Torsion
Given a holomorphic Hilbertian bundle on a compact complex manifold, we introduce the notion of holomorphic $L^2$ torsion, which lies in the determinant line of the twisted $L^2$ Dolbeault cohomology and represents a volume element there. Here we utilise the theory of determinant lines of Hilbertian modules over finite von~Neumann algebras as developed in \cite{CFM}. This specialises to the Ray-Singer-Quillen holomorphic torsion in the finite dimensional case. We compute a metric variation formula for the holomorphic $L^2$ torsion, which shows that it is {\it not\/} in general independent of the choice of Hermitian metrics on the complex manifold and on the holomorphic Hilbertian bundle, which are needed to define it. We therefore initiate the theory of correspondences of determinant lines, that enables us to define a relative holomorphic $L^2$ torsion for a pair of flat Hilbertian bundles, which we prove is independent of the choice of Hermitian metrics on the complex manifold and on the flat Hilbertian bundles.

Keywords:holomorphic $L^2$ torsion, correspondences, local index theorem, almost Kähler manifolds, von~Neumann algebras, determinant lines
Categories:58J52, 58J35, 58J20

9. CJM 1999 (vol 51 pp. 850)

Muhly, Paul S.; Solel, Baruch
Tensor Algebras, Induced Representations, and the Wold Decomposition
Our objective in this sequel to \cite{MSp96a} is to develop extensions, to representations of tensor algebras over $C^{*}$-correspondences, of two fundamental facts about isometries on Hilbert space: The Wold decomposition theorem and Beurling's theorem, and to apply these to the analysis of the invariant subspace structure of certain subalgebras of Cuntz-Krieger algebras.

Keywords:tensor algebras, correspondence, induced representation, Wold decomposition, Beurling's theorem
Categories:46L05, 46L40, 46L89, 47D15, 47D25, 46M10, 46M99, 47A20, 47A45, 47B35

© Canadian Mathematical Society, 2017 :