Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword amenability

  Expand all        Collapse all Results 1 - 4 of 4

1. CJM 2017 (vol 69 pp. 1064)

Crann, Jason
Amenability and Covariant Injectivity of Locally Compact Quantum Groups II
Building on our previous work, we study the non-relative homology of quantum group convolution algebras. Our main result establishes the equivalence of amenability of a locally compact quantum group $\mathbb{G}$ and 1-injectivity of $L^{\infty}(\widehat{\mathbb{G}})$ as an operator $L^1(\widehat{\mathbb{G}})$-module. In particular, a locally compact group $G$ is amenable if and only if its group von Neumann algebra $VN(G)$ is 1-injective as an operator module over the Fourier algebra $A(G)$. As an application, we provide a decomposability result for completely bounded $L^1(\widehat{\mathbb{G}})$-module maps on $L^{\infty}(\widehat{\mathbb{G}})$, and give a simplified proof that amenable discrete quantum groups have co-amenable compact duals which avoids the use of modular theory and the Powers--Størmer inequality, suggesting that our homological techniques may yield a new approach to the open problem of duality between amenability and co-amenability.

Keywords:locally compact quantum group, amenability, injective module
Categories:22D35, 46M10, 46L89

2. CJM 2007 (vol 59 pp. 966)

Forrest, Brian E.; Runde, Volker; Spronk, Nico
Operator Amenability of the Fourier Algebra in the $\cb$-Multiplier Norm
Let $G$ be a locally compact group, and let $A_{\cb}(G)$ denote the closure of $A(G)$, the Fourier algebra of $G$, in the space of completely bounded multipliers of $A(G)$. If $G$ is a weakly amenable, discrete group such that $\cstar(G)$ is residually finite-dimensional, we show that $A_{\cb}(G)$ is operator amenable. In particular, $A_{\cb}(\free_2)$ is operator amenable even though $\free_2$, the free group in two generators, is not an amenable group. Moreover, we show that if $G$ is a discrete group such that $A_{\cb}(G)$ is operator amenable, a closed ideal of $A(G)$ is weakly completely complemented in $A(G)$ if and only if it has an approximate identity bounded in the $\cb$-multiplier norm.

Keywords:$\cb$-multiplier norm, Fourier algebra, operator amenability, weak amenability
Categories:43A22, 43A30, 46H25, 46J10, 46J40, 46L07, 47L25

3. CJM 2007 (vol 59 pp. 828)

Ortner, Ronald; Woess, Wolfgang
Non-Backtracking Random Walks and Cogrowth of Graphs
Let $X$ be a locally finite, connected graph without vertices of degree $1$. Non-backtracking random walk moves at each step with equal probability to one of the ``forward'' neighbours of the actual state, \emph{i.e.,} it does not go back along the preceding edge to the preceding state. This is not a Markov chain, but can be turned into a Markov chain whose state space is the set of oriented edges of $X$. Thus we obtain for infinite $X$ that the $n$-step non-backtracking transition probabilities tend to zero, and we can also compute their limit when $X$ is finite. This provides a short proof of old results concerning cogrowth of groups, and makes the extension of that result to arbitrary regular graphs rigorous. Even when $X$ is non-regular, but \emph{small cycles are dense in} $X$, we show that the graph $X$ is non-amenable if and only if the non-backtracking $n$-step transition probabilities decay exponentially fast. This is a partial generalization of the cogrowth criterion for regular graphs which comprises the original cogrowth criterion for finitely generated groups of Grigorchuk and Cohen.

Keywords:graph, oriented line grap, covering tree, random walk, cogrowth, amenability
Categories:05C75, 60G50, 20F69

4. CJM 2005 (vol 57 pp. 17)

Bédos, Erik; Conti, Roberto; Tuset, Lars
On Amenability and Co-Amenability of Algebraic Quantum Groups and Their Corepresentations
We introduce and study several notions of amenability for unitary corepresentations and $*$-representations of algebraic quantum groups, which may be used to characterize amenability and co-amenability for such quantum groups. As a background for this study, we investigate the associated tensor C$^{*}$-categories.

Keywords:quantum group, amenability
Categories:46L05, 46L65, 22D10, 22D25, 43A07, 43A65, 58B32

© Canadian Mathematical Society, 2017 :