Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword Metaplectic group

  Expand all        Collapse all Results 1 - 4 of 4

1. CJM Online first

Luo, Caihua
Spherical fundamental lemma for metaplectic groups
In this paper, we prove the spherical fundamental lemma for metaplectic group $Mp_{2n}$ based on the formalism of endoscopy theory by J.Adams, D.Renard and Wen-Wei Li.

Keywords:metaplectic group, endoscopic group, elliptic stable trace formula, fundamental lemma

2. CJM 2013 (vol 67 pp. 214)

Szpruch, Dani
Symmetric Genuine Spherical Whittaker Functions on $\overline{GSp_{2n}(F)}$
Let $F$ be a p-adic field of odd residual characteristic. Let $\overline{GSp_{2n}(F)}$ and $\overline{Sp_{2n}(F)}$ be the metaplectic double covers of the general symplectic group and the symplectic group attached to the $2n$ dimensional symplectic space over $F$. Let $\sigma$ be a genuine, possibly reducible, unramified principal series representation of $\overline{GSp_{2n}(F)}$. In these notes we give an explicit formulas for a spanning set for the space of Spherical Whittaker functions attached to $\sigma$. For odd $n$, and generically for even $n$, this spanning set is a basis. The significant property of this set is that each of its elements is unchanged under the action of the Weyl group of $\overline{Sp_{2n}(F)}$. If $n$ is odd then each element in the set has an equivariant property that generalizes a uniqueness result of Gelbart, Howe and Piatetski-Shapiro. Using this symmetric set, we construct a family of reducible genuine unramified principal series representations which have more then one generic constituent. This family contains all the reducible genuine unramified principal series representations induced from a unitary data and exists only for $n$ even.

Keywords:metaplectic group, Casselman Shalika Formula

3. CJM 2012 (vol 64 pp. 497)

Li, Wen-Wei
Le lemme fondamental pondéré pour le groupe métaplectique
Dans cet article, on énonce une variante du lemme fondamental pondéré d'Arthur pour le groupe métaplectique de Weil, qui sera un ingrédient indispensable de la stabilisation de la formule des traces. Pour un corps de caractéristique résiduelle suffisamment grande, on en donne une démonstration à l'aide de la méthode de descente, qui est conditionnelle: on admet le lemme fondamental pondéré non standard sur les algèbres de Lie. Vu les travaux de Chaudouard et Laumon, on s'attend à ce que cette condition soit ultérieurement vérifiée.

Keywords:fundamental lemma, metaplectic group, endoscopy, trace formula
Categories:11F70, 11F27, 22E50

4. CJM 2011 (vol 64 pp. 669)

Pantano, Alessandra; Paul, Annegret; Salamanca-Riba, Susana A.
The Genuine Omega-regular Unitary Dual of the Metaplectic Group
We classify all genuine unitary representations of the metaplectic group whose infinitesimal character is real and at least as regular as that of the oscillator representation. In a previous paper we exhibited a certain family of representations satisfying these conditions, obtained by cohomological induction from the tensor product of a one-dimensional representation and an oscillator representation. Our main theorem asserts that this family exhausts the genuine omega-regular unitary dual of the metaplectic group.

Keywords:Metaplectic group, oscillator representation, bottom layer map, cohomological induction, Parthasarathy's Dirac Operator Inequality, pseudospherical principal series

© Canadian Mathematical Society, 2017 :