Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword Hausdorff

  Expand all        Collapse all Results 1 - 8 of 8

1. CJM Online first

Dow, Alan; Tall, Franklin D.
Normality versus paracompactness in locally compact spaces
This note provides a correct proof of the result claimed by the second author that locally compact normal spaces are collectionwise Hausdorff in certain models obtained by forcing with a coherent Souslin tree. A novel feature of the proof is the use of saturation of the non-stationary ideal on $\omega_1$, as well as of a strong form of Chang's Conjecture. Together with other improvements, this enables the consistent characterization of locally compact hereditarily paracompact spaces as those locally compact, hereditarily normal spaces that do not include a copy of $\omega_1$.

Keywords:normal, paracompact, locally compact, countably tight, collectionwise Hausdorff, forcing with a coherent Souslin tree, Martin's Maximum, PFA(S)[S], Axiom R, moving off property
Categories:54A35, 54D20, 54D45, 03E35, 03E50, 03E55, 03E57

2. CJM 2016 (vol 69 pp. 220)

Zheng, Tao
The Chern-Ricci Flow on Oeljeklaus-Toma Manifolds
We study the Chern-Ricci flow, an evolution equation of Hermitian metrics, on a family of Oeljeklaus-Toma (OT-) manifolds which are non-Kähler compact complex manifolds with negative Kodaira dimension. We prove that, after an initial conformal change, the flow converges, in the Gromov-Hausdorff sense, to a torus with a flat Riemannian metric determined by the OT-manifolds themselves.

Keywords:Chern-Ricci flow, Oeljeklaus-Toma manifold, Calabi-type estimate, Gromov-Hausdorff convergence
Categories:53C44, 53C55, 32W20, 32J18, 32M17

3. CJM 2013 (vol 65 pp. 1384)

Wright, Paul
Estimates of Hausdorff Dimension for Non-wandering Sets of Higher Dimensional Open Billiards
This article concerns a class of open billiards consisting of a finite number of strictly convex, non-eclipsing obstacles $K$. The non-wandering set $M_0$ of the billiard ball map is a topological Cantor set and its Hausdorff dimension has been previously estimated for billiards in $\mathbb{R}^2$, using well-known techniques. We extend these estimates to billiards in $\mathbb{R}^n$, and make various refinements to the estimates. These refinements also allow improvements to other results. We also show that in many cases, the non-wandering set is confined to a particular subset of $\mathbb{R}^n$ formed by the convex hull of points determined by period 2 orbits. This allows more accurate bounds on the constants used in estimating Hausdorff dimension.

Keywords:dynamical systems, billiards, dimension, Hausdorff
Categories:37D20, 37D40

4. CJM 2012 (vol 64 pp. 1182)

Tall, Franklin D.
PFA$(S)[S]$: More Mutually Consistent Topological Consequences of $PFA$ and $V=L$
Extending the work of Larson and Todorcevic, we show there is a model of set theory in which normal spaces are collectionwise Hausdorff if they are either first countable or locally compact, and yet there are no first countable $L$-spaces or compact $S$-spaces. The model is one of the form PFA$(S)[S]$, where $S$ is a coherent Souslin tree.

Keywords:PFA$(S)[S]$, proper forcing, coherent Souslin tree, locally compact, normal, collectionwise Hausdorff, supercompact cardinal
Categories:54A35, 54D15, 54D20, 54D45, 03E35, 03E57, 03E65

5. CJM 2011 (vol 63 pp. 481)

Baragar, Arthur
The Ample Cone for a K3 Surface
In this paper, we give several pictorial fractal representations of the ample or Kähler cone for surfaces in a certain class of $K3$ surfaces. The class includes surfaces described by smooth $(2,2,2)$ forms in ${\mathbb P^1\times\mathbb P^1\times \mathbb P^1}$ defined over a sufficiently large number field $K$ that have a line parallel to one of the axes and have Picard number four. We relate the Hausdorff dimension of this fractal to the asymptotic growth of orbits of curves under the action of the surface's group of automorphisms. We experimentally estimate the Hausdorff dimension of the fractal to be $1.296 \pm .010$.

Keywords:Fractal, Hausdorff dimension, K3 surface, Kleinian groups, dynamics
Categories:14J28, , , , 14J50, 11D41, 11D72, 11H56, 11G10, 37F35, 37D05

6. CJM 2008 (vol 60 pp. 658)

Mihailescu, Eugen; Urba\'nski, Mariusz
Inverse Pressure Estimates and the Independence of Stable Dimension for Non-Invertible Maps
We study the case of an Axiom A holomorphic non-degenerate (hence non-invertible) map $f\from\mathbb P^2 \mathbb C \to \mathbb P^2 \mathbb C$, where $\mathbb P^2 \mathbb C$ stands for the complex projective space of dimension 2. Let $\Lambda$ denote a basic set for $f$ of unstable index 1, and $x$ an arbitrary point of $\Lambda$; we denote by $\delta^s(x)$ the Hausdorff dimension of $W^s_r(x) \cap \Lambda$, where $r$ is some fixed positive number and $W^s_r(x)$ is the local stable manifold at $x$ of size $r$; $\delta^s(x)$ is called \emph{the stable dimension at} $x$. Mihailescu and Urba\'nski introduced a notion of inverse topological pressure, denoted by $P^-$, which takes into consideration preimages of points. Manning and McCluskey study the case of hyperbolic diffeomorphisms on real surfaces and give formulas for Hausdorff dimension. Our non-invertible situation is different here since the local unstable manifolds are not uniquely determined by their base point, instead they depend in general on whole prehistories of the base points. Hence our methods are different and are based on using a sequence of inverse pressures for the iterates of $f$, in order to give upper and lower estimates of the stable dimension. We obtain an estimate of the oscillation of the stable dimension on $\Lambda$. When each point $x$ from $\Lambda$ has the same number $d'$ of preimages in $\Lambda$, then we show that $\delta^s(x)$ is independent of $x$; in fact $\delta^s(x)$ is shown to be equal in this case with the unique zero of the map $t \to P(t\phi^s - \log d')$. We also prove the Lipschitz continuity of the stable vector spaces over $\Lambda$; this proof is again different than the one for diffeomorphisms (however, the unstable distribution is not always Lipschitz for conformal non-invertible maps). In the end we include the corresponding results for a real conformal setting.

Keywords:Hausdorff dimension, stable manifolds, basic sets, inverse topological pressure
Categories:37D20, 37A35, 37F35

7. CJM 2002 (vol 54 pp. 1280)

Skrzypczak, Leszek
Besov Spaces and Hausdorff Dimension For Some Carnot-Carathéodory Metric Spaces
We regard a system of left invariant vector fields $\mathcal{X}=\{X_1,\dots,X_k\}$ satisfying the H\"ormander condition and the related Carnot-Carath\'eodory metric on a unimodular Lie group $G$. We define Besov spaces corresponding to the sub-Laplacian $\Delta=\sum X_i^2$ both with positive and negative smoothness. The atomic decomposition of the spaces is given. In consequence we get the distributional characterization of the Hausdorff dimension of Borel subsets with the Haar measure zero.

Keywords:Besov spaces, sub-elliptic operators, Carnot-Carathéodory metric, Hausdorff dimension
Categories:46E35, 43A15, 28A78

8. CJM 1999 (vol 51 pp. 673)

Barlow, Martin T.; Bass, Richard F.
Brownian Motion and Harmonic Analysis on Sierpinski Carpets
We consider a class of fractal subsets of $\R^d$ formed in a manner analogous to the construction of the Sierpinski carpet. We prove a uniform Harnack inequality for positive harmonic functions; study the heat equation, and obtain upper and lower bounds on the heat kernel which are, up to constants, the best possible; construct a locally isotropic diffusion $X$ and determine its basic properties; and extend some classical Sobolev and Poincar\'e inequalities to this setting.

Keywords:Sierpinski carpet, fractal, Hausdorff dimension, spectral dimension, Brownian motion, heat equation, harmonic functions, potentials, reflecting Brownian motion, coupling, Harnack inequality, transition densities, fundamental solutions
Categories:60J60, 60B05, 60J35

© Canadian Mathematical Society, 2017 :