CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword Fourier transform

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM Online first

Tuxanidy, Aleksandr; Wang, Qiang
A new proof of the Hansen-Mullen irreducibility conjecture
We give a new proof of the Hansen-Mullen irreducibility conjecture. The proof relies on an application of a (seemingly new) sufficient condition for the existence of elements of degree $n$ in the support of functions on finite fields. This connection to irreducible polynomials is made via the least period of the discrete Fourier transform (DFT) of functions with values in finite fields. We exploit this relation and prove, in an elementary fashion, that a relevant function related to the DFT of characteristic elementary symmetric functions (which produce the coefficients of characteristic polynomials) satisfies a simple requirement on the least period. This bears a sharp contrast to previous techniques in literature employed to tackle existence of irreducible polynomials with prescribed coefficients.

Keywords:irreducible polynomial, primitive polynomial, Hansen-Mullen conjecture, symmetric function, $q$-symmetric, discrete Fourier transform, finite field
Category:11T06

2. CJM 2008 (vol 60 pp. 685)

Savu, Anamaria
Closed and Exact Functions in the Context of Ginzburg--Landau Models
For a general vector field we exhibit two Hilbert spaces, namely the space of so called \emph{closed functions} and the space of \emph{exact functions} and we calculate the codimension of the space of exact functions inside the larger space of closed functions. In particular we provide a new approach for the known cases: the Glauber field and the second-order Ginzburg--Landau field and for the case of the fourth-order Ginzburg--Landau field.

Keywords:Hermite polynomials, Fock space, Fourier coefficients, Fourier transform, group of symmetries
Categories:42B05, 81Q50, 42A16

3. CJM 2006 (vol 58 pp. 401)

Kolountzakis, Mihail N.; Révész, Szilárd Gy.
On Pointwise Estimates of Positive Definite Functions With Given Support
The following problem has been suggested by Paul Tur\' an. Let $\Omega$ be a symmetric convex body in the Euclidean space $\mathbb R^d$ or in the torus $\TT^d$. Then, what is the largest possible value of the integral of positive definite functions that are supported in $\Omega$ and normalized with the value $1$ at the origin? From this, Arestov, Berdysheva and Berens arrived at the analogous pointwise extremal problem for intervals in $\RR$. That is, under the same conditions and normalizations, the supremum of possible function values at $z$ is to be found for any given point $z\in\Omega$. However, it turns out that the problem for the real line has already been solved by Boas and Kac, who gave several proofs and also mentioned possible extensions to $\RR^d$ and to non-convex domains as well. Here we present another approach to the problem, giving the solution in $\RR^d$ and for several cases in~$\TT^d$. Actually, we elaborate on the fact that the problem is essentially one-dimensional and investigate non-convex open domains as well. We show that the extremal problems are equivalent to some more familiar ones concerning trigonometric polynomials, and thus find the extremal values for a few cases. An analysis of the relationship between the problem for $\RR^d$ and that for $\TT^d$ is given, showing that the former case is just the limiting case of the latter. Thus the hierarchy of difficulty is established, so that extremal problems for trigonometric polynomials gain renewed recognition.

Keywords:Fourier transform, positive definite functions and measures, Turán's extremal problem, convex symmetric domains, positive trigonometric polynomials, dual extremal problems
Categories:42B10, 26D15, 42A82, 42A05

© Canadian Mathematical Society, 2017 : https://cms.math.ca/