Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword Brascamp-Lieb inequality

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2017 (vol 69 pp. 481)

Cordero-Erausquin, Dario
Transport Inequalities for Log-concave Measures, Quantitative Forms and Applications
We review some simple techniques based on monotone mass transport that allow us to obtain transport-type inequalities for any log-concave probability measure, and for more general measures as well. We discuss quantitative forms of these inequalities, with application to the Brascamp-Lieb variance inequality.

Keywords:log-concave measures, transport inequality, Brascamp-Lieb inequality, quantitative inequalities
Categories:52A40, 60E15, 49Q20

2. CJM 2016 (vol 68 pp. 762)

Colesanti, Andrea; Gómez, Eugenia Saorín; Nicolás, Jesus Yepes
On a Linear Refinement of the Prékopa-Leindler Inequality
If $f,g:\mathbb{R}^n\longrightarrow\mathbb{R}_{\geq0}$ are non-negative measurable functions, then the Prékopa-Leindler inequality asserts that the integral of the Asplund sum (provided that it is measurable) is greater or equal than the $0$-mean of the integrals of $f$ and $g$. In this paper we prove that under the sole assumption that $f$ and $g$ have a common projection onto a hyperplane, the Prékopa-Leindler inequality admits a linear refinement. Moreover, the same inequality can be obtained when assuming that both projections (not necessarily equal as functions) have the same integral. An analogous approach may be also carried out for the so-called Borell-Brascamp-Lieb inequality.

Keywords:Prékopa-Leindler inequality, linearity, Asplund sum, projections, Borell-Brascamp-Lieb inequality
Categories:52A40, 26D15, 26B25

3. CJM 2010 (vol 62 pp. 870)

Valdimarsson, Stefán Ingi
The Brascamp-Lieb Polyhedron
A set of necessary and sufficient conditions for the Brascamp--Lieb inequality to hold has recently been found by Bennett, Carbery, Christ, and Tao. We present an analysis of these conditions. This analysis allows us to give a concise description of the set where the inequality holds in the case where each of the linear maps involved has co-rank $1$. This complements the result of Barthe concerning the case where the linear maps all have rank $1$. Pushing our analysis further, we describe the case where the maps have either rank $1$ or rank $2$. A separate but related problem is to give a list of the finite number of conditions necessary and sufficient for the Brascamp--Lieb inequality to hold. We present an algorithm which generates such a list.

Keywords:Brascamp-Lieb inequality, Loomis-Whitney inequality, lattice, flag
Categories:44A35, 14M15, 26D20

© Canadian Mathematical Society, 2017 :