1. CJM 2017 (vol 69 pp. 481)
 CorderoErausquin, Dario

Transport Inequalities for Logconcave Measures, Quantitative Forms and Applications
We review some simple techniques based on monotone mass transport
that allow us to obtain transporttype inequalities for any
logconcave
probability measure, and for more general measures as well. We
discuss quantitative forms of these inequalities, with application
to the BrascampLieb variance inequality.
Keywords:logconcave measures, transport inequality, BrascampLieb inequality, quantitative inequalities Categories:52A40, 60E15, 49Q20 

2. CJM 2016 (vol 68 pp. 762)
 Colesanti, Andrea; Gómez, Eugenia Saorín; Nicolás, Jesus Yepes

On a Linear Refinement of the PrÃ©kopaLeindler Inequality
If $f,g:\mathbb{R}^n\longrightarrow\mathbb{R}_{\geq0}$ are nonnegative measurable
functions, then the PrÃ©kopaLeindler inequality asserts that
the integral of the Asplund sum (provided that it is measurable)
is greater or equal than the $0$mean of the integrals of $f$
and $g$.
In this paper we prove that under the sole assumption that $f$
and $g$ have
a common projection onto a hyperplane, the PrÃ©kopaLeindler
inequality admits a linear refinement. Moreover, the same inequality
can be obtained when assuming that both projections (not necessarily
equal as functions) have the same integral. An analogous approach
may be also carried out for the socalled BorellBrascampLieb
inequality.
Keywords:PrÃ©kopaLeindler inequality, linearity, Asplund sum, projections, BorellBrascampLieb inequality Categories:52A40, 26D15, 26B25 

3. CJM 2010 (vol 62 pp. 870)
 Valdimarsson, Stefán Ingi

The BrascampLieb Polyhedron
A set of necessary and sufficient conditions for the BrascampLieb inequality to hold has recently been found by Bennett, Carbery, Christ, and Tao. We present an analysis of these conditions. This analysis allows us to give a concise description of the set where the inequality holds in the case where each of the linear maps involved has corank $1$. This complements the result of Barthe concerning the case where the linear maps all have rank $1$. Pushing our analysis further, we describe the case where the maps have either rank $1$ or rank $2$. A separate but related problem is to give a list of the finite number of conditions necessary and sufficient for the BrascampLieb inequality to hold. We present an algorithm which generates such a list.
Keywords:BrascampLieb inequality, LoomisWhitney inequality, lattice, flag Categories:44A35, 14M15, 26D20 
