Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword $C^*$-algebra

  Expand all        Collapse all Results 1 - 8 of 8

1. CJM Online first

Eilers, Søren; Restorff, Gunnar; Ruiz, Efren; Sørensen, Adam P. W.
Geometric classification of graph C*-algebras over finite graphs
We address the classification problem for graph $C^*$-algebras of finite graphs (finitely many edges and vertices), containing the class of Cuntz-Krieger algebras as a prominent special case. Contrasting earlier work, we do not assume that the graphs satisfy the standard condition (K), so that the graph $C^*$-algebras may come with uncountably many ideals. We find that in this generality, stable isomorphism of graph $C^*$-algebras does not coincide with the geometric notion of Cuntz move equivalence. However, adding a modest condition on the graphs, the two notions are proved to be mutually equivalent and equivalent to the $C^*$-algebras having isomorphic $K$-theories. This proves in turn that under this condition, the graph $C^*$-algebras are in fact classifiable by $K$-theory, providing in particular complete classification when the $C^*$-algebras in question are either of real rank zero or type I/postliminal. The key ingredient in obtaining these results is a characterization of Cuntz move equivalence using the adjacency matrices of the graphs. Our results are applied to discuss the classification problem for the quantum lens spaces defined by Hong and Szymański, and to complete the classification of graph $C^*$-algebras associated to all simple graphs with four vertices or less.

Keywords:graph $C^*$-algebra, geometric classification, $K$-theory, flow equivalence
Categories:46L35, 46L80, 46L55, 37B10

2. CJM 2013 (vol 65 pp. 1287)

Reihani, Kamran
$K$-theory of Furstenberg Transformation Group $C^*$-algebras
The paper studies the $K$-theoretic invariants of the crossed product $C^{*}$-algebras associated with an important family of homeomorphisms of the tori $\mathbb{T}^{n}$ called Furstenberg transformations. Using the Pimsner-Voiculescu theorem, we prove that given $n$, the $K$-groups of those crossed products, whose corresponding $n\times n$ integer matrices are unipotent of maximal degree, always have the same rank $a_{n}$. We show using the theory developed here that a claim made in the literature about the torsion subgroups of these $K$-groups is false. Using the representation theory of the simple Lie algebra $\frak{sl}(2,\mathbb{C})$, we show that, remarkably, $a_{n}$ has a combinatorial significance. For example, every $a_{2n+1}$ is just the number of ways that $0$ can be represented as a sum of integers between $-n$ and $n$ (with no repetitions). By adapting an argument of van Lint (in which he answered a question of Erdős), a simple, explicit formula for the asymptotic behavior of the sequence $\{a_{n}\}$ is given. Finally, we describe the order structure of the $K_{0}$-groups of an important class of Furstenberg crossed products, obtaining their complete Elliott invariant using classification results of H. Lin and N. C. Phillips.

Keywords:$K$-theory, transformation group $C^*$-algebra, Furstenberg transformation, Anzai transformation, minimal homeomorphism, positive cone, minimal homeomorphism
Categories:19K14, 19K99, 46L35, 46L80, , 05A15, 05A16, 05A17, 15A36, 17B10, 17B20, 37B05, 54H20

3. CJM 2011 (vol 64 pp. 705)

Thomsen, Klaus
Pure Infiniteness of the Crossed Product of an AH-Algebra by an Endomorphism
It is shown that simplicity of the crossed product of a unital AH-algebra with slow dimension growth by an endomorphism implies that the algebra is also purely infinite, provided only that the endomorphism leaves no trace state invariant and takes the unit to a full projection.

Keywords:purely infinite $C^*$-algebras, crossed products

4. CJM 2008 (vol 60 pp. 703)

Toms, Andrew S.; Winter, Wilhelm
$\mathcal{Z}$-Stable ASH Algebras
The Jiang--Su algebra $\mathcal{Z}$ has come to prominence in the classification program for nuclear $C^*$-algebras of late, due primarily to the fact that Elliott's classification conjecture in its strongest form predicts that all simple, separable, and nuclear $C^*$-algebras with unperforated $\mathrm{K}$-theory will absorb $\mathcal{Z}$ tensorially, i.e., will be $\mathcal{Z}$-stable. There exist counterexamples which suggest that the conjecture will only hold for simple, nuclear, separable and $\mathcal{Z}$-stable $C^*$-algebras. We prove that virtually all classes of nuclear $C^*$-algebras for which the Elliott conjecture has been confirmed so far consist of $\mathcal{Z}$-stable $C^*$-algebras. This follows in large part from the following result, also proved herein: separable and approximately divisible $C^*$-algebras are $\mathcal{Z}$-stable.

Keywords:nuclear $C^*$-algebras, K-theory, classification
Categories:46L85, 46L35

5. CJM 2007 (vol 59 pp. 343)

Lin, Huaxin
Weak Semiprojectivity in Purely Infinite Simple $C^*$-Algebras
Let $A$ be a separable amenable purely infinite simple \CA which satisfies the Universal Coefficient Theorem. We prove that $A$ is weakly semiprojective if and only if $K_i(A)$ is a countable direct sum of finitely generated groups ($i=0,1$). Therefore, if $A$ is such a \CA, for any $\ep>0$ and any finite subset ${\mathcal F}\subset A$ there exist $\dt>0$ and a finite subset ${\mathcal G}\subset A$ satisfying the following: for any contractive positive linear map $L: A\to B$ (for any \CA $B$) with $ \|L(ab)-L(a)L(b)\|<\dt$ for $a, b\in {\mathcal G}$ there exists a homomorphism $h\from A\to B$ such that $ \|h(a)-L(a)\|<\ep$ for $a\in {\mathcal F}$.

Keywords:weakly semiprojective, purely infinite simple $C^*$-algebras
Categories:46L05, 46L80

6. CJM 2006 (vol 58 pp. 1268)

Sims, Aidan
Gauge-Invariant Ideals in the $C^*$-Algebras of Finitely Aligned Higher-Rank Graphs
We produce a complete description of the lattice of gauge-invariant ideals in $C^*(\Lambda)$ for a finitely aligned $k$-graph $\Lambda$. We provide a condition on $\Lambda$ under which every ideal is gauge-invariant. We give conditions on $\Lambda$ under which $C^*(\Lambda)$ satisfies the hypotheses of the Kirchberg--Phillips classification theorem.

Keywords:Graphs as categories, graph algebra, $C^*$-algebra

7. CJM 2005 (vol 57 pp. 351)

Lin, Huaxin
Extensions by Simple $C^*$-Algebras: Quasidiagonal Extensions
Let $A$ be an amenable separable $C^*$-algebra and $B$ be a non-unital but $\sigma$-unital simple $C^*$-algebra with continuous scale. We show that two essential extensions $\tau_1$ and $\tau_2$ of $A$ by $B$ are approximately unitarily equivalent if and only if $$ [\tau_1]=[\tau_2] \text{ in } KL(A, M(B)/B). $$ If $A$ is assumed to satisfy the Universal Coefficient Theorem, there is a bijection from approximate unitary equivalence classes of the above mentioned extensions to $KL(A, M(B)/B)$. Using $KL(A, M(B)/B)$, we compute exactly when an essential extension is quasidiagonal. We show that quasidiagonal extensions may not be approximately trivial. We also study the approximately trivial extensions.

Keywords:Extensions, Simple $C^*$-algebras
Categories:46L05, 46L35

8. CJM 2001 (vol 53 pp. 809)

Robertson, Guyan; Steger, Tim
Asymptotic $K$-Theory for Groups Acting on $\tA_2$ Buildings
Let $\Gamma$ be a torsion free lattice in $G=\PGL(3, \mathbb{F})$ where $\mathbb{F}$ is a nonarchimedean local field. Then $\Gamma$ acts freely on the affine Bruhat-Tits building $\mathcal{B}$ of $G$ and there is an induced action on the boundary $\Omega$ of $\mathcal{B}$. The crossed product $C^*$-algebra $\mathcal{A}(\Gamma)=C(\Omega) \rtimes \Gamma$ depends only on $\Gamma$ and is classified by its $K$-theory. This article shows how to compute the $K$-theory of $\mathcal{A}(\Gamma)$ and of the larger class of rank two Cuntz-Krieger algebras.

Keywords:$K$-theory, $C^*$-algebra, affine building
Categories:46L80, 51E24

© Canadian Mathematical Society, 2017 :