Number of right ideals and a q-analogue of indecomposable permutations
Roland Bacher, Christophe Reutenauer, Roland Bacher, and Christophe Reutenauer

Abstract. We prove that the number of right ideals of codimension n in the algebra of noncommutative Laurent polynomials in two variables over the finite field \mathbb{F}_q is equal to $(q - 1)^{n+1} q^{(n+1)(n-2)/2} \sum_{\theta} q^{\text{inv}(\theta)}$, where the sum is over all indecomposable permutations in S_{n+1} and where $\text{inv}(\theta)$ stands for the number of inversions of θ.