Constrained approximation with Jacobi weights
Kirill Kopotun, Dany Leviatan, and Igor Shevchuk

Abstract. In this paper, we prove that, for \(\ell = 1 \) or \(\ell = 2 \), the rate of best \(\ell \)-monotone polynomial approximation in the \(L_p \) norm \((1 \leq p \leq \infty) \) weighted by the Jacobi weight
\[
w_{\alpha, \beta}(x) := (1 + x)^{\alpha} (1 - x)^{\beta}
\]
with \(\alpha, \beta > -1/p \) if \(p < \infty \), or \(\alpha, \beta \geq 0 \) if \(p = \infty \), is bounded by an appropriate \((\ell + 1) \)st modulus of smoothness with the same weight, and that this rate cannot be bounded by the \((\ell + 2) \)nd modulus. Related results on constrained weighted spline approximation and applications of our estimates are also given.