Abstract. Let $\beta : S^{2n+1} \to S^{2n+1}$ be a minimal homeomorphism ($n \geq 1$). We show that the crossed product $C(S^{2n+1}) \rtimes \beta \mathbb{Z}$ has rational tracial rank at most one. Let Ω be a connected compact metric space with finite covering dimension and with $H^1(\Omega, \mathbb{Z}) = \{0\}$. Suppose that $K_i(C(\Omega)) = \mathbb{Z} \oplus G_i$, where G_i is a finite abelian group, $i = 0, 1$. Let $\beta : \Omega \to \Omega$ be a minimal homeomorphism. We also show that $A = C(\Omega) \rtimes \beta \mathbb{Z}$ has rational tracial rank at most one and is classifiable. In particular, this applies to the minimal dynamical systems on odd dimensional real projective spaces. This is done by studying minimal homeomorphisms on $X \times \Omega$, where X is the Cantor set.