A Skolem–Mahler–Lech Theorem for Iterated Automorphisms of K-algebras

Jason P. Bell and Jeffrey C. Lagarias

Abstract. This paper proves a commutative algebraic extension of a generalized Skolem-Mahler-Lech theorem due to the first author. Let A be a finitely generated commutative K-algebra over a field of characteristic 0, and let σ be a K-algebra automorphism of A. Given ideals I and J of A, we show that the set S of integers m such that $\sigma^m(I) \supseteq J$ is a finite union of complete doubly infinite arithmetic progressions in m, up to the addition of a finite set. Alternatively, this result states that for an affine scheme X of finite type over K, an automorphism $\sigma \in \text{Aut}_K(X)$, and Y and Z any two closed subschemes of X, the set of integers m with $\sigma^m(Z) \subseteq Y$ is as above. The paper presents examples showing that this result may fail to hold if the affine scheme X is not of finite type, or if X is of finite type but the field K has positive characteristic.