Abstract. A metric space $M = (M; d)$ is **homogeneous** if for every isometry f of a finite subspace of M to a subspace of M there exists an isometry of M onto M extending f. The space M is **universal** if it isometrically embeds every finite metric space F with $\text{dist}(F) \subseteq \text{dist}(M)$. (With $\text{dist}(M)$ being the set of distances between points in M.)

A metric space U is an **Urysohn** metric space if it is homogeneous, universal, separable and complete. (It is not difficult to deduce that an Urysohn metric space U isometrically embeds every separable metric space M with $\text{dist}(M) \subseteq \text{dist}(U)$.)

The main results are: (1) A characterization of the sets $\text{dist}(U)$ for Urysohn metric spaces U. (2) If R is the distance set of an Urysohn metric space and M and N are two metric spaces, of any cardinality with distances in R, then they amalgamate disjointly to a metric space with distances in R. (3) The completion of every homogeneous, universal, separable metric space M is homogeneous.