Critical Points and Resonance of Hyperplane Arrangements

D. Cohen, G. Denham, M. Falk, and A. Varchenko

Abstract. If \(\Phi_\lambda \) is a master function corresponding to a hyperplane arrangement \(A \) and a collection of weights \(\lambda \), we investigate the relationship between the critical set of \(\Phi_\lambda \), the variety defined by the vanishing of the one-form \(\omega_\lambda = d \log \Phi_\lambda \), and the resonance of \(\lambda \). For arrangements satisfying certain conditions, we show that if \(\lambda \) is resonant in dimension \(p \), then the critical set of \(\Phi_\lambda \) has codimension at most \(p \). These include all free arrangements and all rank 3 arrangements.

Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, U.S.A. e-mail: cohen@math.lsu.edu

Department of Mathematics, University of Western Ontario, London, ON N6A 5B7 e-mail: gdenham@uwo.ca

Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, AZ 86011, U.S.A. e-mail: michael.falk@nau.edu

Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A. e-mail: anv@email.unc.edu

Received by the editors June 26, 2009. Published electronically April 30, 2011.

D. Cohen was partially supported by National Security Agency grant H98230-05-1-0055. G. Denham was partially supported by a grant from NSERC of Canada. A. Varchenko was partially supported by NSF grant DMS-0555327.

AMS subject classification: 32S22, 55N25, 52C35.

Keywords: hyperplane arrangement, master function, resonant weights, critical set.