Distribution Algebras on p-adic Groups and Lie Algebras

Allen Moy

Abstract. When F is a p-adic field, and $G = G(F)$ is the group of F-rational points of a connected algebraic F-group, the complex vector space $\mathcal{H}(G)$ of compactly supported locally constant distributions on G has a natural convolution product that makes it into a C-algebra (without an identity) called the Hecke algebra. The Hecke algebra is a partial analogue for p-adic groups of the enveloping algebra of a Lie group. However, $\mathcal{H}(G)$ has drawbacks such as the lack of an identity element, and the process $G \mapsto \mathcal{H}(G)$ is not a functor. Bernstein introduced an enlargement $\mathcal{H}^\wedge(G)$ of $\mathcal{H}(G)$. The algebra $\mathcal{H}^\wedge(G)$ consists of the distributions that are left essentially compact. We show that the process $G \mapsto \mathcal{H}^\wedge(G)$ is a functor. If $\tau : G \rightarrow H$ is a morphism of p-adic groups, let $F(\tau) : \mathcal{H}^\wedge(G) \rightarrow \mathcal{H}^\wedge(H)$ be the morphism of C-algebras. We identify the kernel of $F(\tau)$ in terms of $\text{Ker}(\tau)$. In the setting of p-adic Lie algebras, with \mathfrak{g} a reductive Lie algebra, \mathfrak{m} a Levi, and $\tau : \mathfrak{g} \rightarrow \mathfrak{m}$ the natural projection, we show that $F(\tau)$ maps G-invariant distributions on \mathfrak{g} to $N_G(\mathfrak{m})$-invariant distributions on \mathfrak{m}. Finally, we exhibit a natural family of G-invariant essentially compact distributions on \mathfrak{g} associated with a G-invariant non-degenerate symmetric bilinear form on \mathfrak{g} and in the case of $SL(2)$ show how certain members of the family can be moved to the group.

Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

e-mail: amoy@ust.hk

Received by the editors November 9, 2009.
Published electronically April 25, 2011.
The author is partly supported by Hong Kong Research Grants Council grant CERG #602408.
AMS subject classification: 22E50, 22E35.
Keywords: distribution algebra, p-adic groups.