Spectral Asymptotics of Laplacians Associated with One-dimensional Iterated Function Systems with Overlaps

Sze-Man Ngai

Abstract. We set up a framework for computing the spectral dimension of a class of one-dimensional self-similar measures that are defined by iterated function systems with overlaps and satisfy a family of second-order self-similar identities. As applications of our result we obtain the spectral dimension of important measures such as the infinite Bernoulli convolution associated with the golden ratio and convolutions of Cantor-type measures. The main novelty of our result is that the iterated function systems we consider are not post-critically finite and do not satisfy the well-known open set condition.

College of Mathematics and Computer Science, Hunan Normal University, Changsha, Hunan 410081, China

and

Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA 30460-8093, U.S.A.
e-mail: smngai@georgiasouthern.edu

Received by the editors March 31, 2009.
Published electronically February 25, 2011.
The author is supported in part by a Faculty Research Grant from Georgia Southern University.
AMS subject classification: 28A80, 35P20, 35J05, 43A05, 47A75.
Keywords: spectral dimension, fractal, Laplacian, self-similar measure, iterated function system with overlaps, second-order self-similar identities.