Holomorphic variations of minimal disks with boundary on a Lagrangian surface

Jingyi Chen and Ailana Fraser

Abstract. Let L be an oriented Lagrangian submanifold in an n-dimensional Kähler manifold M. Let $u: D \to M$ be a minimal immersion from a disk D with $u(\partial D) \subset L$ such that $u(D)$ meets L orthogonally along $u(\partial D)$. Then the real dimension of the space of admissible holomorphic variations is at least $n + \mu(E, F)$, where $\mu(E, F)$ is a boundary Maslov index; the minimal disk is holomorphic if there exist n admissible holomorphic variations that are linearly independent over \mathbb{R} at some point $p \in \partial D$; if $M = \mathbb{C}P^n$ and u intersects L positively, then u is holomorphic if it is stable, and its Morse index is at least $n + \mu(E, F)$ if u is unstable.