Characterizations of Extremals for some Functionals on Convex Bodies

Christos Saroglou

Abstract. We investigate equality cases in inequalities for Sylvester-type functionals. Namely, it was proven by Campi, Colesanti, and Gronchi that the quantity
\[\int_{x_0 \in K} \cdots \int_{x_n \in K} [V(\text{conv}\{x_0, \ldots, x_n\})]^p \, dx_0 \cdots dx_n, \quad n \geq d, \quad p \geq 1 \]
is maximized by triangles among all planar convex bodies \(K \) (parallelograms in the symmetric case). We show that these are the only maximizers, a fact proven by Giannopoulos for \(p = 1 \). Moreover, if \(h: \mathbb{R}_+ \to \mathbb{R}_+ \) is a strictly increasing function and \(W_j \) is the \(j \)-th quermassintegral in \(\mathbb{R}^d \), we prove that the functional
\[\int_{x_0 \in K_0} \cdots \int_{x_n \in K_n} h(W_j(\text{conv}\{x_0, \ldots, x_n\})) \, dx_0 \cdots dx_n, \quad n \geq d \]
is minimized among the \((n+1)\)-tuples of convex bodies of fixed volumes if and only if \(K_0, \ldots, K_n \) are homothetic ellipsoids when \(j = 0 \) (extending a result of Groemer) and Euclidean balls with the same center when \(j > 0 \) (extending a result of Hartzoulaki and Paouris).

University of Crete, Department of Mathematics
e-mail: saroglou@math.uoc.gr

Received by the editors May 18, 2008.
Published electronically July 6, 2010.
AMS subject classification: 52A40, 52A22.