Some Applications of the Perturbation Determinant in Finite von Neumann Algebras

Konstantin A. Makarov and Anna Skripka

Abstract. In the finite von Neumann algebra setting, we introduce the concept of a perturbation determinant associated with a pair of self-adjoint elements H_0 and H in the algebra and relate it to the concept of the de la Harpe–Skandalis homotopy invariant determinant associated with piecewise C^1-paths of operators joining H_0 and H. We obtain an analog of Krein’s formula that relates the perturbation determinant and the spectral shift function and, based on this relation, we derive subsequently (i) the Birman–Solomyak formula for a general non-linear perturbation, (ii) a universality of a spectral averaging, and (iii) a generalization of the Dixmier–Fuglede–Kadison differentiation formula.

Konstantin A. Makarov, Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
ee-mail: makarovk@missouri.edu

Anna Skripka, Department of Mathematics, Texas A&M University, College Station, TX 77843, USA
ee-mail: askripka@math.tamu.edu

Received by the editors July 17, 2007.
AMS subject classification: 47A55, 47C15, 47A53.
Keywords: perturbation determinant, trace formulae, von Neumann algebras.