Tail Bounds for the Stable Marriage of Poisson and Lebesgue

Christopher Hoffman, Alexander E. Holroyd, and Yuval Peres

Abstract. Let Ξ be a discrete set in \mathbb{R}^d. Call the elements of Ξ centers. The well-known Voronoi tessellation partitions \mathbb{R}^d into polyhedral regions (of varying volumes) by allocating each site of \mathbb{R}^d to the closest center. Here we study allocations of \mathbb{R}^d to Ξ in which each center attempts to claim a region of equal volume α.

We focus on the case where Ξ arises from a Poisson process of unit intensity. In an earlier paper by the authors it was proved that there is a unique allocation which is stable in the sense of the Gale–Shapley marriage problem. We study the distance X from a typical site to its allocated center in the stable allocation.

The model exhibits a phase transition in the appetite α. In the critical case $\alpha = 1$ we prove a power law upper bound on X in dimension $d = 1$. (Power law lower bounds were proved earlier for all d). In the non-critical cases $\alpha < 1$ and $\alpha > 1$ we prove exponential upper bounds on X.

Received by the editors October 24, 2006.

The first author was funded in part by NSF (USA) grant DMS-0100445 and by MSRI. The second author was funded in part by an NSERC (Canada) research grant and by MSRI and PIMS. The third author was funded in part by NSF (USA) grants DMS-0104073 and DMS-0244479 and by MSRI and CPAM.

AMS subject classification: 60D05.

Keywords: stable marriage, point process, phase transition.

© Canadian Mathematical Society 2009.