Close Lattice Points on Circles

Javier Cilleruelo and Andrew Granville

Abstract. We classify the sets of four lattice points that all lie on a short arc of a circle that has its center at the origin; specifically on arcs of length $t R^{1/3}$ on a circle of radius R, for any given $t > 0$. In particular we prove that any arc of length $(40 + \frac{40}{3} \sqrt{10})^{1/3} R^{1/3}$ on a circle of radius R, with $R > \sqrt{65}$, contains at most three lattice points, whereas we give an explicit infinite family of 4-tuples of lattice points, $(\nu_1, n, \nu_2, n, \nu_3, n, \nu_4, n)$, each of which lies on an arc of length $(40 + \frac{40}{3} \sqrt{10})^{1/3} R^{1/3} + o(1)$ on a circle of radius R_n.

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
E-mail: franciscojavier.cilleruelo@uam.es

Département de Mathématiques et Statistique, Université de Montréal, CP 6128 succ Centre-Ville, Montréal, QC H3C 3J7
E-mail: andrew@dms.umontreal.ca

Received by the editors January 25, 2007.
The second author was partially supported by an NSERC grant. He would like to thank the first author for his frequent hospitality, as well that of the Universidad Autónoma de Madrid, over the years in which we worked together on this stubborn problem.
AMS subject classification: 11N36.
© Canadian Mathematical Society 2009.