Higher Order Tangents to Analytic Varieties along Curves. II

Rüdiger W. Braun, Reinhold Meise, and B. A. Taylor

Abstract. Let V be an analytic variety in some open set in \mathbb{C}^n. For a real analytic curve γ with $\gamma(0) = 0$ and $d \geq 1$, define $V_t = t^{-d}(V - \gamma(t))$. It was shown in a previous paper that the currents of integration over V_t converge to a limit current whose support $T_{\gamma,d}V$ is an algebraic variety as t tends to zero. Here, it is shown that the canonical defining function of the limit current is the suitably normalized limit of the canonical defining functions of the V_t. As a corollary, it is shown that $T_{\gamma,d}V$ is either inhomogeneous or coincides with $T_{\gamma,\delta}V$ for all δ in some neighborhood of d. As another application it is shown that for surfaces only a finite number of curves lead to limit varieties that are interesting for the investigation of Phragmén-Lindelöf conditions. Corresponding results for limit varieties $T_{\sigma,\delta}W$ of algebraic varieties W along real analytic curves tending to infinity are derived by a reduction to the local case.

Received by the editors March 21, 2005; revised November 22, 2005.
AMS subject classification: 32C25.