Classification of Ding’s Schubert Varieties: Finer Rook Equivalence

Mike Develin, Jeremy L. Martin, and Victor Reiner

Abstract. K. Ding studied a class of Schubert varieties X_λ in type A partial flag manifolds, indexed by integer partitions λ and in bijection with dominant permutations. He observed that the Schubert cell structure of X_λ is indexed by maximal rook placements on the Ferrers board B_λ, and that the integral cohomology groups $H^*(X_\lambda; \mathbb{Z}), H^*(X_\mu; \mathbb{Z})$ are additively isomorphic exactly when the Ferrers boards B_λ, B_μ satisfy the combinatorial condition of rook-equivalence.

We classify the varieties X_λ up to isomorphism, distinguishing them by their graded cohomology rings with integer coefficients. The crux of our approach is studying the nilpotence orders of linear forms in the cohomology ring.