Partial \ast-Automorphisms, Normalizers, and Submodules in Monotone Complete C^\ast-Algebras

Masamichi Hamana

Abstract. For monotone complete C^\ast-algebras $A \subseteq B$ with A contained in B as a monotone closed C^\ast-subalgebra, the relation $X = AxA$ gives a bijection between the set of all monotone closed linear subspaces X of B such that $AX +XA \subseteq X$ and $XX^* + X^*X \subseteq A$ and a set of certain partial isometries s in the “normalizer” of A in B, and similarly for the map $s \mapsto Ad_s$ between the latter set and a set of certain “partial \ast-automorphisms” of A. We introduce natural inverse semigroup structures in the set of such X’s and the set of partial \ast-automorphisms of A, modulo a certain relation, so that the composition of these maps induces an inverse semigroup homomorphism between them. For a large enough B the homomorphism becomes surjective and all the partial \ast-automorphisms of A are realized via partial isometries in B. In particular, the inverse semigroup associated with a type II$_1$ von Neumann factor, modulo the outer automorphism group, can be viewed as the fundamental group of the factor. We also consider the C^\ast-algebra version of these results.

Received by the editors June 12, 2003; revised August 23, 2005.
AMS subject classification: Primary: 46L05, 46L08, 46L40; secondary: 20M18.