Generalized k-Configurations

Sindi Sabourin

Abstract. In this paper, we find configurations of points in n-dimensional projective space (\mathbb{P}^n) which simultaneously generalize both k-configurations and reduced 0-dimensional complete intersections. Recall that k-configurations in \mathbb{P}^2 are disjoint unions of distinct points on lines and in \mathbb{P}^n are inductively disjoint unions of k-configurations on hyperplanes, subject to certain conditions. Furthermore, the Hilbert function of a k-configuration is determined from those of the smaller k-configurations. We call our generalized constructions k_D-configurations, where $D = \{d_1, \ldots, d_r\}$ (a set of r positive integers with repetition allowed) is the type of a given complete intersection in \mathbb{P}^n. We show that the Hilbert function of any k_D-configuration can be obtained from those of smaller k_D-configurations. We then provide applications of this result in two different directions, both of which are motivated by corresponding results about k-configurations.