Semi-Classical Behavior of the Scattering Amplitude for Trapping Perturbations at Fixed Energy

Laurent Michel

Abstract. We study the semi-classical behavior as $h \to 0$ of the scattering amplitude $f(\theta, \omega, \lambda, h)$ associated to a Schrödinger operator $P(h) = -\frac{1}{2}h^2 \Delta + V(x)$ with short-range trapping perturbations. First we realize a spatial localization in the general case and we deduce a bound of the scattering amplitude on the real line. Under an additional assumption on the resonances, we show that if we modify the potential $V(x)$ in a domain lying behind the barrier $\{ x : V(x) > \lambda \}$, the scattering amplitude $f(\theta, \omega, \lambda, h)$ changes by a term of order $O(h^\infty)$. Under an escape assumption on the classical trajectories incoming with fixed direction ω, we obtain an asymptotic development of $f(\theta, \omega, \lambda, h)$ similar to the one established in the non-trapping case.