Asymptotics for Minimal Discrete Riesz Energy on Curves in \mathbb{R}^d

A. Martínez-Finkelshtein, V. Maymeskul, E. A. Rakhmanov and E. B. Saff

Abstract. We consider the s-energy $E(Z_n; s) = \sum_{i \neq j} K(\|z_{i,n} - z_{j,n}\|; s)$ for point sets $Z_n = \{z_{k,n} : k = 0, \ldots, n\}$ on certain compact sets Γ in \mathbb{R}^d having finite one-dimensional Hausdorff measure, where

$$K(t ; s) = \begin{cases} t^{-s}, & \text{if } s > 0, \\ -\ln t, & \text{if } s = 0, \end{cases}$$

is the Riesz kernel. Asymptotics for the minimum s-energy and the distribution of minimizing sequences of points is studied. In particular, we prove that, for $s \geq 1$, the minimizing nodes for a rectifiable Jordan curve Γ distribute asymptotically uniformly with respect to arclength as $n \to \infty$.

Received by the editors September 17, 2002.

The research of the first author was supported, in part, by the INTAS project 2000-272, a research grant from Ministerio de Ciencia y Tecnología (MCYT) of Spain, project code BFM2001-3878-C02-02, and of Junta de Andalucía, Grupo de Investigación FQM 0229. The research of the last author was supported, in part, by the U.S. National Science Foundation under grant DMS-0296026.

AMS subject classification: Primary: 52A40; secondary: 31C20.

Keywords: Riesz energy, Minimal discrete energy, Rectifiable curves, Best-packing on curves.