On a Certain Residual Spectrum of Sp_8

James Todd Pogge

Abstract. Let $G = \text{Sp}_{2n}$ be the symplectic group defined over a number field F. Let A be the ring of adeles. A fundamental problem in the theory of automorphic forms is to decompose the right regular representation of $G(A)$ acting on the Hilbert space $L^2(G(F) \setminus G(A))$. Main contributions have been made by Langlands. He described, using his theory of Eisenstein series, an orthogonal decomposition of this space of the form:

$$L^2(G(F) \setminus G(A)) = \bigoplus_{(M, \pi)} L^2_{\text{dis}}(G(F) \setminus G(A))_{(M, \pi)},$$

where (M, π) is a Levi subgroup with a cuspidal automorphic representation π taken modulo conjugacy. (Here we normalize π so that the action of the maximal split torus in the center of G at the archimedean places is trivial.)

and $L^2_{\text{dis}}(G(F) \setminus G(A))_{(M, \pi)}$ is a space of residues of Eisenstein series associated to (M, π). In this paper, we will completely determine the space $L^2_{\text{dis}}(G(F) \setminus G(A))_{(M, \pi)}$, when $M \simeq \text{GL}_2 \times \text{GL}_2$. This is the first result on the residual spectrum for non-maximal, non-Borel parabolic subgroups, other than GL_n.

Received by the editors April 4, 2002.

AMS subject classification: 11F70, 22E55.