Admissible Majorants for Model Subspaces of H^2, Part I: Slow Winding of the Generating Inner Function

Victor Havin and Javad Mashreghi

Abstract. A model subspace K_{Θ} of the Hardy space $H^2 = H^2(\mathbb{C}_+)$ for the upper half plane \mathbb{C}_+ is $H^2(\mathbb{C}_+) \ominus \Theta H^2(\mathbb{C}_+)$ where Θ is an inner function in \mathbb{C}_+. A function $\omega : \mathbb{R} \rightarrow [0, \infty)$ is called an admissible majorant for K_{Θ} if there exists an $f \in K_{\Theta}$, $f \not\equiv 0$, $|f(x)| \leq \omega(x)$ almost everywhere on \mathbb{R}. For some (mainly meromorphic) Θ's some parts of Adm_Θ (the set of all admissible majorants for K_{Θ}) are explicitly described. These descriptions depend on the rate of growth of $\arg \Theta$ along \mathbb{R}. This paper is about slowly growing arguments (slower than x). Our results exhibit the dependence of Adm_B on the geometry of the zeros of the Blaschke product B. A complete description of Adm_B is obtained for B's with purely imaginary ("vertical") zeros. We show that in this case a unique minimal admissible majorant exists.