Higher Dimensional Asymptotic Cycles

Sol Schwartzman

Abstract. Given a p-dimensional oriented foliation of an n-dimensional compact manifold M^n and a transversal invariant measure τ, Sullivan has defined an element of $H_p(M^n, \mathbb{R})$. This generalized the notion of a μ-asymptotic cycle, which was originally defined for actions of the real line on compact spaces preserving an invariant measure μ. In this one-dimensional case there was a natural 1–1 correspondence between transversal invariant measures τ and invariant measures μ when one had a smooth flow without stationary points.

For what we call an oriented action of a connected Lie group on a compact manifold we again get in this paper such a correspondence, provided we have what we call a positive quantifier. (In the one-dimensional case such a quantifier is provided by the vector field defining the flow.) Sufficient conditions for the existence of such a quantifier are given, together with some applications.