Slim Exceptional Sets for Sums of Cubes
Trevor D. Wooley

Abstract. We investigate exceptional sets associated with various additive problems involving sums of cubes. By developing a method wherein an exponential sum over the set of exceptions is employed explicitly within the Hardy-Littlewood method, we are better able to exploit excess variables. By way of illustration, we show that the number of odd integers not divisible by 9, and not exceeding X, that fail to have a representation as the sum of 7 cubes of prime numbers, is $O(X^{23/36 + \varepsilon})$. For sums of eight cubes of prime numbers, the corresponding number of exceptional integers is $O(X^{11/36 + \varepsilon})$.

Received by the editors March 27, 2001; revised August 2, 2001.
The author is a Packard Fellow, and was supported in part by NSF grant DMS-9970440.
AMS subject classification: 11P32, 11P05, 11P55.
Keywords: Waring’s problem, exceptional sets.