Convergence Factors and Compactness in Weighted Convolution Algebras

Fereidoun Ghahramani and Sandy Grabiner

Abstract. We study convergence in weighted convolution algebras $L^1(\omega)$ on R^+, with the weights chosen such that the corresponding weighted space $M(\omega)$ of measures is also a Banach algebra and is the dual space of a natural related space of continuous functions. We determine convergence factor η for which weak*-convergence of $\{\lambda_n\}$ to λ in $M(\omega)$ implies norm convergence of $\lambda_n * f$ to $\lambda * f$ in $L^1(\omega\eta)$. We find necessary and sufficient conditions which depend on ω and f and also find necessary and sufficient conditions for η to be a convergence factor for all $L^1(\omega)$ and all f in $L^1(\omega)$. We also give some applications to the structure of weighted convolution algebras. As a preliminary result we observe that η is a convergence factor for ω and f if and only if convolution by f is a compact operator from $M(\omega)$ (or $L^1(\omega)$) to $L^1(\omega\eta)$.

Received by the editors June 1, 2001; revised November 21, 2001.
The first author’s research was supported by NSERC grant OGP 003664.