Classification of Simple Tracially AF C^*-Algebras

Huaxin Lin

Abstract. We prove that pre-classifiable (see 3.1) simple nuclear tracially AF C^*-algebras (TAF) are classified by their K-theory. As a consequence all simple, locally AH and TAF C^*-algebras are in fact AH algebras (it is known that there are locally AH algebras that are not AH). We also prove the following Rationalization Theorem. Let A and B be two unital separable nuclear simple TAF C^*-algebras with unique normalized traces satisfying the Universal Coefficient Theorem. If A and B have the same (ordered and scaled) K-theory and $K_0(A)_+$ is locally finitely generated, then $A \otimes \mathbb{Q} \cong B \otimes \mathbb{Q}$, where \mathbb{Q} is the UHF-algebra with the rational K_0-theory. Classification results (with restriction on K_0-theory) for the above C^*-algebras are also obtained. For example, we show that, if A and B are unital nuclear separable simple TAF C^*-algebras with the unique normalized trace satisfying the UCT and with $K_1(A) = K_1(B)$, and A and B have the same rational (scaled ordered) K_0, then $A \cong B$. Similar results are also obtained for some cases in which K_0 is non-divisible such as $K_0(A) = \mathbb{Z}[1/2]$.